نوشته شده توسط : کلینیک بتن ایران

 

گروه مشاور ژئوتکنیک و خدمات مهندسی بتن:

مهندسی و اجرای ترمیم سازه های بتنی، مهندسی و اجرای طرح حفاظت از سازه های بتنی و فولادی، مهندسی و اجرای کف پوش های صنعتی مقاوم بتنی، اجرای کف پوشهای صنعتی مقاوم اپوکسی، اجرای کف پوش های صنعتی مقاوم رزینی ، اجرای کف پوش اپوکسی،اجرای کف پوش رزینی ، اجرای کف پوش بتنی ، اجرای کف پوش انبار ها ، اجرای کف پوش فرودگاه ها ، اجرای کف پوش تعمیرگاه ها و اجرای کف پوش سالن های ورزشی، مقاوم سازی سازه های بتنی به روش FRP و ...، مشاوره ؛ارائه طرح و اجرای آب بندی سازه های بتنی، پیمانکار آب بندی بتن، آب بندی مخازن بتنی ، آب بندی کلاریفایر ، آب بندی استخر ، آب بندی سازه های بتنی حجیم ، مشاوره و اجرای کاشت آرماتور ، بولت و کرگیری در بتن مسلح ، مجری آب بندی سازه های بتنی ، اجرا کننده ترمیم و آب بندی سازه های بتنی.

سیستم های آب بندی بتن

آب بندی انواع سازه های بتونی نظیر مخازن بتنی ، آب بندی مخازن آب تصفیه خانه های آب و فاضلاب ، آب بندی استخر ها و آب بندی فونداسیونها ،آب بندی برج های خنک کن، آب بندی برج های خنک کننده ، آب بندی کلاریفایر ، آب بندی کولینگ تاور ، آب بندی ایستگاه های پمپاژ ، ترمیم وآب بندی حوضچه های بتنی ، آب بندی مخازن آب آتشنشانی ، آب بندی لو پیت ها ، آب بندی کانال ها یا ترانشه های برق زیرزمینی ،آب بندی سازه های دریایی و...

سیستم های درزگیری

درزگیر ها

درزگیری و پر نمودن درز های انبساط در کانال های انتقال آب و محوطه پالایشگاه و فرودگاه ها ، درزگیری ترک های سطحی آسفالت و بتن، درزگیری باند فرودگاه ها ، درزگیری پارکینگ های طبقاتی ، درزگیری منابع ذخیره آب بتنی و ...

پوشش سطوح فلزی و بتنی

پوشش سطوح بتنی وفلزی در شرایط مغروق در آب، فاضلاب ، مواد شیمیایی و بعنوان یک غشاء محافظ الاستومری در تصفیه خانه های فاضلاب ،خطوط لوله مخازن محیط های دریایی و...

سیستم های کف پوش

کف پوش های صنعتی بتنی و رزینی و کف سابی بتن و اجرای فوم بتن کف

کف پوش پلی یورتان و پلی یوریا ، کف پوش ضد ضربه، کف پوش ضد سایش ویکپارچه در کف پوش فرودگاه ها ، کف پوش پارکینگ ها ، کف پوش سرد خانه ها و کف پوش محیط های تحت تنش و لرزش ، کف پوش کارخانجات شیمیایی و بهداشتی و...

کف سازی مقاوم بتنی صنعتی جهت پوشش کف پوش کارخانه ها و کف پوش پارکینگ ها ، کف پوش کشتارگاه های صنعتی ، کف پوش بتن سخت ، کف پوش بتن لیسه ای و انجام و اجرای کف سابی بتن جهت صیقلی نمودن سطح بتن ناهموار و متخلخل.

سیستم های ترمیمی بتن

ترمیم بتن به منظور حفاظت از خوردگی آرماتور ها ، ترمیم بتن در محیط های صنعتی داخلی و خارجی و ترمیم بتن سطوح در معرض تنش های زیاد وترمیم بتن سنگین نظیر کف های صنعتی ، ترمیم بتن پارکینگ ها ، ترمیم بتن فرودگاه ها، ترمیم بتن رمپ ها و ترمیم بتن صنایع استراتژیک و...

تقویت سازه های بتونی با استفاده از آخرین فن آوری ها، با روش تزریق رزین FRP ، کاشت آرماتور ، کاشت میلگرد ، کاشت بولت ، مغزه گیری بتن ، کر گیری ، تست های غیر مخرب و آزمایشگاهی بتن .

تثبیت لایه های خاک ، زیر سازی خاک ، بستر سازی خاک ، جداره سازی خاک ، ترا نشه ، آب بندی حوضچه های خاکی و کانال های سطح شهر

تثبیت دیواره های تونل ها ، ترانشه های بتنی ، تثبیت پی ها وجلوگیری از ادامه نشست سازه با تزریق رزین ویژه در خاک زیر پی

سیستم های رنگ های صنعتی

محافظت سطوح داخلی و خارجی مخازن آب ، تجهیزات انتقال آب، لوله ها ، سازه های فلزی در معرض شرایط جوی و بعنوان پرایمر سطوح فلزی در سیستم های پوششی مناطق ساحلی ، کنار دریا ، اسکله و سکو های نفتی

سیستم های ایزولاسیون

پوشش های دریایی

آب بندی دریچه عرشه کشتی، آب بندی و نشتی گیری اضطراری خطوط لوله و آب بندی تجهیزات آبی ، آب بندی سوخت و مواد نفتی، آب بندی سازه های فلزی(آب بندی آشیانه هواپیما، آب بندی سالن ها، آب بندی کارگاه ها )، لوله گزاری سکو های دریایی ، پوشش داخلی و خارجی در محیط های دریایی و صنعتی، تسهیلات آب بندی بندرگاهی ، آب بندی سازه های دریایی، آب بندی کشتی ها ، آب بندی خطوط لوله، آب بندی نیروگاه ها ، آب بندی در سیستم های پوششی در محیط های بسیار خورنده دریایی و ...

شرکت فنی مهندسی کلینیک بتن ایران با در اخیتار داشتن تجهیزات مورد نیاز ، دانش فنی و تجربه اجرایی مربوطه نسبت به ارائه این خدمات تخصصی بتن به پروژه های مختلف در سطح کشور اقدام نموده است.



:: برچسب‌ها: کلینیک بتن ایران ,
:: بازدید از این مطلب : 237
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : یک شنبه 6 خرداد 1397 | نظرات ()
نوشته شده توسط : کلینیک بتن ایران


در این بخش می خوانیم

ویژگی های بتن مطلوب در حاشیه خلیج فارس

نیاز مبرم به تغییر کیفیت بتن آماده معمولی در حاشیه خلیج فارس

نقش مواد افزودنی در بتن های حاشیه خلیج فارس

نقش مواد روان کننده و آشنایی گسترده تر با آن ها در بتن های حاشیه خلیج فارس

نقش مواد دیرگیر کننده در بتن های حاشیه خلیج فارس

نقش مواد پودری معدنی - پوزولان ها و روباره ها - در بتن های حاشیه خلیج فارس

نقش مواد بازدارنده خوردگی در بتن های حاشیه خلیج فارس

نقش مواد آب بند کننده و یا دافع آب در بتن های حاشیه خلیج فارس

نقش مواد حفاظت کننده سطحی - کیورینگ بتن - عمل آوری بتن - در سازه های بتنی حاشیه خلیج فارس

مقدمه

لزوم مصرف افزودنی بتن برای بهبود کیفیت بتن و بالا بردن مقاومت، دوام بتن و نفوذپذیری بتن

نیاز به بتن با دوام و نفوذناپذیر در حاشیه خلیج فارس بویژه در مورد بتن مسلح

وجود مشکل خوردگی میلگرد های بتن در حاشیه خلیج فارس

عدم امکان ساخت بتن مطلوب بدون مصرف افزودنی های بتن و افزودنی های مختلف و ضروری بتن

وجود مشکلات اجرایی منجمله گرمی هوا

عدم امکان رفع مشکلات اجرایی بدون مصرف افزودنی های بتن

امکان افزایش عمر مفید سازه های بتنی با افزودنی های بتن

گستردگی استفاده از بتن آماده و مشکلات آن

ویژگی های بتن مطلوب در حاشیه خلیج فارس

ویژگی های بتن مطلوب می تواند مربوط به موارد زیر باشد:

الف- ویژگی های ضابطه ای بتن مسلح - قسمت روی میلگرد یا آرماتور

کیفیت مصالح سنگی از نظر مکانیکی و وجود مواد زیان آور بویژه یون کلرید

ویژگی های هندسی و شکلی مصالح سنگی مانند محدودیت حداکثر اندازه اسمی

میلیمتر و شکستگی درشت دانه ها

دانه بندی مصالح سنگی: بافت دانه بندی متوسط تا نسبتا ریز درصد

بیشتر از 5 و کمتر از 8 C3A کیفیت سیمان: مصرف سیمان هایی با

کیفیت آب : محدودیت مواد زیان آور بویژه یون کلرید

نسبت های اختلاط: محدودیت حداکثر نسبت آب به سیمان ، محدودیت حداقل و حداکثر عیار سیمان - حداقل 350 طبق آبا و 25 تا 375 طبق آیین نامه پایایی

کارآیی: نیاز به روانی 75 تا 150 میلیمتر در غالب موارد بجز بتن ترمی یا برخی قطعات پیش ساخته

نوع و نحوه عمل آوری بتن : عمل اوری مناسب بتن و ترجیحا با رطوبت رسانی به مدت کافی

دما در هنگام ریختن : حداکثر 30 یا 32 درجه

ب- ویژگی های عملکردی بتن مسلح - قسمت روی میلگرد یا آرماتور

مقاومت فشاری 28 روزه بتن : حداقل 35 طبق آیین نامه آبا یا رده 30تا 40 در آیین نامه پایایی

جذب آب نیم ساعته بتن 28 روزه - حداکثر 2 تا 3 درصد

عمق نفوذ آب تحت فشار بتن 28 روزه - حداکثر 10 تا 30 میلیمتر

شاخص عبوذ جریان الکتریکی در بتن 28 روزه - حداکثر 2000 تا 3000 کولمب

مقاومت ویژه الکتریکی 28 روزه - حذاقل 50 تا 100 اهم متر

ضریب جذب آب مویینه - حداکثر 7/0 تا 9/0 میلیمتر بر جذب زمان بر حسب ساعت

ISATجذب آب سطحی اولیه

حداکثر 25/0 تا 5/0 میلیمتر بر مترمربع در ثانیه (در 10 دقیقه اول)

حداکثر 15/0 تا 3/0 میلیمتر بر مترمربع در ثانیه (در 30 دقیقه)

حداکثر 25/0 تا 5/0 میلیمتر بر مترمربع در ثانیه (در 1ساعت)

حداکثر 25/0 تا 5/0 میلیمتر بر مترمربع در ثانیه (در 2ساعت)

ضریب نفوذ گاز اکسیژن

ضریب انتشار یون کلرید در بتن - حداکثر 30 تا 150 میلیمتر مربع در سال

جذب اب نهایی : حداکثر 4 تا 6 درصد

نیاز مبرم به تغییر کیفیت بتن های آماده معمولی در حاشیه خلیج فارس

با توجه به ویژگی های بتن مطلوب نمی توان از بتن های آماده معمولی در حاشیه خلیج فارس استفاده کرد.

وضعیت فعلی مطلوب را می توان بصورت زیر مقایسه کرد :

وضعیت فعلی بتن های آماده

فروش بتن بر اساس عیار سیمان

فروش بتن بر اساس مقاومت 28 روزه استوانه ای در حد 20 و 25 مگاپاسگال -25 و 30 مکعبی

استفاده از سنگدانه با حداکثر اندازه اسمی 25 میلیمتر و دانه بندی متوسط تا درشت.

عدم محدودیت نسبت آب به سیمان و نامشخص بودن آن

عدم توجه به روانی بتن - روانی مطلوب و افزودن آب در پای کار به علت کارایی کم

حمل در فواصل طولانی در هوای گرم بدون توجه به زمان گیرش اولیه

عدم وجود محدودیت برای دمای بتن در هنگام ریختن

عدم کنترل جدی میزان یون کلرید بتن

عدم توجه به نوع سیمان مصرفی

عدم توجه به محدودیت های عیار سیمان مصرفی

عدم بکارگیری افزودنی های بتن - فوق روان کننده بتن ف کندگیر کننده بتن و میکروسیلیس و غیره

وضعیت مطلوب بتن های آماده

فروش بتن بر اساس رده های مقاومتی 28 روزه و استوانه ای 30 تا 40 مگاپاسگال

رعایت حداکثر اندازه اسمی 20 میلیمتر و دانه بندی متوسط تا نسبتا ریز

استفاده از شن نیمه شکسته یا شکسته و ترجیحا ماسه گرد گوشه

رعایت نسبت آب به سیمان 4/0 یا 45/0

در نظر گرفتن روانی مطلوب بتن با توجه به نوع قطعه و وسیله بتن ریزی

رعایت محدودیت های عیار سیمان بویژه حداکثر عیار سیمان

توجه به فاصله زمانی حمل استفاده از کندگیر کننده بتن بویژه در هوای گرم

توجه به حداکثر دمای مجاز در هنگام ریختن بتن و مسلما ساخت بتن خنک در کارخانه

کنترل مقدار یون کلرید موجود در بتن مسلح

بکارگیری روان کننده بتن یا فوق روان کننده بتن

استفاده از دوده سیلیسی فوق روان کننده بتن.

نقش مواد افزودنی بتن در بتن های حاشیه خلیج فارس

برای دستیابی به بتن مطلوب و اجرای مناسب نیاز به افزودنی های مختلفی احساس می شود.

برای تامین روانی بتن با وجود کاهش نسبت آب به سیمان نیاز به روان کننده بتن یا فوق روان کننده بتن وجود دارد.

امروزه مواد روان کننده بتن یا فوق روان کننده معمولا به افزایش مقاومت و دوام بتن منجر می شود

برای اجرای بهتر و دیرگرفتن بتن نیاز به مواد کندگیر کننده بتن وجود دارد.

گاه برای کاهش نفوذ یون کلرید و رطوبت در بتن نیاز به مصرف پوزولان های طبیعی و مصنوعی مناسب یا سرباره ها وجود دارد.

دوده سیلیسی می تواند به شدت از نفوذ یون کلرید و خوردی میلگرد و خوردگی آرماتور بکاهد.

بکار گیری دوده سیلیسی نیازمند بکارگیری فوق روان کننده بتون بیشتری می باشد.

امروزه در برخی پروژه ها از مواد بازدارنده خورندگی در بتن استفاده می شود.

نقش برخی مواد آب بند کننده بتن و یا دافع آب بتن در کاهش خوردگی میلگرد ها روشن نیست اما بنظر می رسد کاهش نفوذ رطوبت و یون کلرید در بتن در اکثر موارد مثبت باشد.

برخی مواد هرچند افزودنی محسوب نمی شود اما کمک مهمی را به انجام می رسانند مانند موادی که برای پوشش روی میلگرد ها یا پوشش سطحی بتن بکار می روند.

نقش مواد روان کننده بتن در بتن های حاشیه خلیج فارس و آشنایی گسترده تر با مواد شیمیایی بتن

مواد روان کننده بتن معمولا پیوند اجزای بتن را کنترل می کند.

مواد روان کننده بتن با یکدیگر و سایر اجزا را در بتن تازه کاهش می دهد.

مواد روان کننده بتن به توزیع سیمان و مواد پودری ریز در بتن کمک می کنند.

مواد روان کننده بتن موجب روان تر شدن بتن می گردند.

مواد روتن کننده بتن می تواند به کاهش آب بتن منجر شود بدون اینکه روانی افزایش یابد.

مواد روان کننده بتن می تواند به کاهش نسبت آب به سیمان بتن منجر شود بدون اینکه روانی بتن و عیار سیمان افزایش یابد.

مواد روان کننده بتن می تواند به افزایش مقاومت و دوام و نفوذناپذیری بتن منجر شود حتی اگر نسبت آب به سیمان کاهش نیابد.

مواد روان کننده بتن می تواند موجب کاهش مصرف سیمان با حفظ روانی بتن گردد.

مواد روان کننده بتن می تواند به کاهش جمع شدگی و افزایش مقاومت و دوام و نفوذناپیری بتن به دلیل کاهش مصرف سیمان با وجود ثابت بودن نسبت آب به سیمان منجر شود.

مواد روان کننده بتن می تواند در یک زمان به کاهش نسبت آب به سیمان، کاهش عیار سیمان و افزایش روانی بتن منجر گردد و موجب افزایش مقاومت، دوام، نفوذناپذیری و کاهش جمع شدگی بتن در سازه های بتنی شود.

آشنایی گسترده تر با روان کننده های بتن

روان کننده های بتن معمولی

روان کننده های معمولی بتن بیش از نیم قرن سابقه دارند-این مواد معمولا به صورت لیگنوسولفونات ها در بازار ایران وجود دارند.

روان کننده های معمولی بتن باید حداقل 5 درصد از آب بتن را با حداقل میزان مصرف پیشنهادی کاهش دهند.

روان کننده های معمولی بتن حداکثر می توانند 12 درصد از آب بتن را با حداکثر میزان مصرف پیشنهادی کاهش دهند.

روان کننده های معمولی بتن غالبا نقش کندگیر کننده بتن را نیز دارند.

روان کننده های معمولی بتن ممکن است تا حدودی حبابزایی داشته باشند.

میزان مصرف پیشنهادی روان کننده های لیگنوسولفوناتی بین 2/0 تا 1 درصد وزنی سیمان است.

غلظت مواد پودری روان کننده های معمولی باید در حدود 38 تا 42 درصد وزن مایع باشد و در این حالت چگالی آن 17/1 تا 20/1 کیلوگرم بر لیتر است.

ماده لیگنوسولفوناتی دارای رنگ قهوه ای تیره با بوی تند زننده الکلی می باشند.

مواد روان کننده معمولی غالبا دارای افت اسلامپ بتن کمی هستند و برای مدت بیشتری می توانند حفظ روانی بتن نمایند.

قیمت روان کننده معمولی مایع یا غلظت معمول امروزه در محدود 1500 تا 2000 تومان به ازای هر کیلو می باشد.

با افزودن برخی افزونه ها به وجود روان کننده معمولی می توان بر حبابزایی گیرش و حفظ روانی بتن آن تاثیر گذارد.

روان کننده قوی بتن یا فوق روان کننده های بتن

Super placticizers (SP), High Range Water Reducing Agens (HRWRA)

فوق روان کننده ها باید دست کم 12 درصد از آب بتن را با حداقل میزان معرفت پیشنهادی کاهش دهنده روان کننده های قوی دارای دسته بندی های مختلفی از نظر نوع مواد متشکله هستند سابقه برخی از این مواد بیش از روان کننده های معمولی و سابقه بعضی از آنها کمتر از دو دهه است.

فرم لدئید نفتالین سولفونانته فشرده از جمله فوق روان کننده های قدیمی بتن است که معمولا به نام مواد نفتالینی شناخته می شود.

فرم لدئید سولفونانته فشرده دارای رنگ قهوه ای تیره است و ذاتا کندگیر می باشد.

غلظت فرم آلدئید سولفونانته فشرده پودری در حدود 33 تا 37 درصد وزن مایع می باشد و بین حالت چگالی آن بین 1/16 تا 1/18 کیلو گرم بر لیتر است.

میزان مصرف پیشنهادی فوق روان کننده نفتالینی بتن بسته به غلظت آن بین 3/0 تا 5/1 درصد وزن سیمان است.

حئاکثر آب فوق روان کننده نفتالینی بتن در حدود 22 درصد به ازای حداکثر میزان مصرف پیشنهادی می باشد.

افت روانی فوق روان کنده نفتالینی بتن متوسط می باشد و به هر حال باید مدنظر قرار گیرد.

قیمت فوق روان کننده نفتالینی بتن با غلظت متعارف و بسته به میزان کندگیری یا حفظ روانی بین 1000 تا 1350 تومان به ازای هر کیلو می باشد.

با افزودن برخی مواد به فوق روان کننده نفتالینی می توان بر زمان گیرش و حفظ روانی آن تاثیر گذاشت.

فرم آلدئید ملامین سولفوناته فشرده پودری دارای رنگ سفید و مایع آن بیرنگ متمایل به شکری است.

فرم آلدئید ملامین سولفوناته فشرده ذاتا از زودگیری برخوردار است و افت اسلامپ آن زیاد می بیاشد.

غظت مواد پودری ملامینی بین 20 تا 35 درصد وزنی مایع آن می باشد و چگالی آن بین 08/1 تا 12/1 می باشد.

با افزودن مواد کندگیر کننده و برخی افزونه های دیگر می توان زمان گیرش را زیاد تر و افت اسلامپ آن را کمتر نمود.

در مواردی که قفاصله زمانی ساخت با حمل بتن زیاد است بهتر است این مواد را مصرف ننمود.

حداقل درصد کاهش آب این مواد به ازای حداقل میزان پیشنهاد ی نباید کمتر از 12 در صد باشد.

حداکثر درصد کاهش آب مواد ملامینی ممکن است به بیش از 25 درصد بالغ شود.

مواد پودری ملامینی در ایران ساخته می شود و بدین قیمت واحد آن عملا در حد روان کننده های معمولی است.

قیمت مواد ملامینی مایع ایرانی بسته به غلظت آن بین 650 تا 800 تومان به ازای هر کیلو می باشد.

قیمت نوع خارجی آن حدود 30 تا 50 درصد بالاتر است.

میزان مصرف مواد ملامینی مایع بسته به غلظت آن بین 5/0 تا 5/3 درصد می باشد.

پلی کربوکسیلاتی بصورت مایع و به رنگ های طوسی با زرد کدر به بازار عرضه می شود.

مواد پلی کربوکسیلاتی معمولا بصورت خنثی می باشند و می توان آن را زودگیر یا کندگیرتر نمود.

مواد پلی کربوکسیلاتس معمولا از افت اسلامپ متوسطی برخوردار است که می توان مدت حفظ اسلامپ را افزایش داد.

حداقل درصد کاهش آب این حداقل میزان مصرف پیشنهادی نباید 12 درصد باشد.

حداکثر درصد کاهش آب این مواد به ازای حداکثر میزان مصرف پیشنهاد ی به حدود 35 درصد می رسد.

میزان مصرف این مواد بین 3/0 تا 5/1 درصد پیشنهاد می شود.

قیمت پلی کربوکسیلات ها بسته به نوع و غلظت آن بین 2500 تا 3200 تومان به ازای هر کیلو می باشد.

چگالی پلی کربوکسیلات ها بین 05/1 تا 1/1 کیلوگرم بر لیتر می باشد.

آکریلات ها از جمله فوق روان کننده های جدید هستند که کمتر در ایران مصرف می شود.

آکریلات ها بصورت مایع شیری رنگ هستند.

نقش مواد دیرگیر کننده (Retarders) در بتن های حاشیه خلیج فارس

این مواد مجازند زمان گیرش بتن را به میزان حداکثر 4 ساعت به تاخیر اندازند.

این مواد می توانند موجب حفظ اسلامپ در طول حمل و عملیات بتن ریزی شوند.

این مواد می توانند سرعت هیدراسیون را در ابتدای کار کاهش و سرعت گرمازایی را کم کنند و به بتن ریزی های حجیم تا حدی کمک نمایند تا در دمای مغز بتن آرام تر بالا رود و فرصت تبادل بیشتری بوجود آید و تنش های حرارتی کمتر گردد.

وقتی فاصله زمانی حمل و مدت بتن ریزی یک محموله بطول می انجامد بهتر است از مواد دیرگیر کننده استفاده کرد.

در صورتی که در مناطق گرم و خشک بتن ریخته شده با تاخیر درگیرش مواجه شود احتمال ترک خوردگی ناشی از جمع شدگی خمیری بدلیل تبخیر افزایش می یابد.

مواد دیرگیر کننده موجود در بازار ایران عمودتا از نوع لیگنوسولفونات ها یا گلوکونات ها و یا فسفات کلسیم می باشد که گلوکونات عملکرد بهتری دارند.

نقش مواد پودری معدنی پوزولان ها و روباره هادر بتن حاشیه خلیج فارس

پوزولان ها

پوزولان ها با آهک هیدراته (هیدروکسید کلسیم) ترکیب می شوند و ماده پر کننده و چسباننده بوجود می آورند که نفوذ پذیری را کم کرده و ph خمیرسیمان را نیز کاهش می دهند اغلب پوزولان ها دوام در برابر سولفات ها را بهبود می بخشند.

پوزولان ها به صورت های طبیعی (خام کلسینه) و یا مصنوعی های هتش فشانی در تولید سیمان بکار می روند و کمتر بصورت افزودنی در بتن استفاده می شود سیمان های پرتلند پوزولانی ایران حاوی حداکثر 15 درصد از این نوع پوزولان ها می باشند.

وجود حداکثر 15 درصد پوزولان طبیعی در سیمان آمیخته تاثیر کمی بر کیفیت مقاومتی و دوامی در دراز مدت دارد.

مصرف پوزولان های طبیعی می توان مصرف آب بتن را بیشتر کند که تاثیر منفی ذبر مقاومت و دوام را می توان به همراه داشته باشد.

مصرف پوزولان های طبیعی می توان افت اسلامپ بیشتری را به وجود آورد که مثبت تلقی نمی شود.

افزایش پوزولان (بیش از 15 درصد) بر مقاومت های کوتاه مدت و میان مدت تاثیر منفی می گذارد اما ممکن است برای دراز مدت مطلوب باشد.

مصرف پوزولان طبیعی بیش از 30 یا 35 درصد ممکن است مفید نباشد و آهکی یافت نشود و مقاومت های دراز مدت نیز افت کند.

مهمترین پوزولان های مصنوعی مصرفی در ایران دوده سیلیسی و خاکستر بادی هستند.

دوده سیلیسی در سه کارخانه در ایران تولید می شود اما خاکستر بادی مصرفی از خارج وارد می گردد و بیشترین مصرف آنها در حاشیه خلیج فارس می باشد.

دوده سیلیسی عمدتا مربوط به غبار کارخانه های فرو آلیاژ یا فرو سیلیس که ذرات بسیار ریز تقریبا کروی شکل دارد و از نوع سیلیس آمورف (غیر بلوری) است.

در صورت پودر کردن سنگ های سیلیسی بصورت خیلی ریز و میکرونیزه میکروسیلیس حاصل نمی شود و فروش این مواد به عنوان میکروسیلیسیک نوع کلاهبرداری رایج تلقی می شود.

ذرات میکرو سیلیس در م.حدوده 50/0 تا 2/0 میکرون می باشد و سطح ویژه آن بین 13 تا 30 متر مربع در هر گرم می باشد (ریزی سیمان 3/0 متر مربع در هر گرم).

واکنش دوده سیلیسی با آهک خمیر سیمان سریع تر از سایر پوزولان های طبیعی و مصنوعی است بنابراین درگیری در بتن حاوی دوده سیلیسیعملا دیده نمی شود.

بتن حاوی دوده سیلیسی چسبنده تر چسبناک تر و آب انداختن و جدا شدگی کمتر می گردد.

امکان ترک خردگی ناشی از تبخیر در بتن میکروسیلیس دار بیشتر می شود اما تاثیر آن در دراز مدت روشن نیست.

نفوذ پذیری بتن میکروسیلیس کار کمتر می شود و مقاومت الکتریکی ویژه بتن بیشتر می گردد و یون کلرید کمتر نفوذ می کند.

دوام بتن میکروسیلیس دار در برابر برخی سولفات ها محل تامل و اختلاف است.

وجود میکروسیلیس مصرف آب بتن را به شدت بالا می برد.

امکان بکارگیری میکروسیلیس بدون فوق روان کننده امکان پذیر نیست.

مصرف میکروسیلیس در اختلاط بتن در بسیاری از موارد نتیجه مثبتی را ببار نمی آورد.

بهتر است دوغاب یا ژل میکروسیلیس را در ساخت بتن بکار برد.

بکارگیری 6تا 8 درصد دوده سیلیسی (جایگزین سیمان) در بتن توصیه می شود.

مصرف کمتر از 5 درصد دوده سیلیسی نتیجه مثبتی ببار نمی آورد و مصرف بیش از 10 درصد از نظر فنی و اقتصادی توصیه نمی گردد.

میکروسیلیس برای جلوگیری یا کنترل انبساط ناشی از واکنش قلیایی با سنگدانه های واکنش زا مفید است.

میکروسیلیسی که به خوبی در بتن پخش نشده و به صورت کلوخه در آید می تواند در اثر واکنش با قلیایی ها انبساط مخرب بوجود آورد.

میکروسیلیس کار پمپاژ را مشکل می کند و موجب سایش وسائل و تجهیزات می گردد.

برخی معتقدند که غبار میکروسیلیس در کارگاه می تواند بر سلامتی افراد تاثیر منفی گذارد.

قیمت هر کیلو میکرو سیلیس در ایران حدود 300 تومان می باشد (بدون هزینه بسته بندی و حمل)

خاکستر بادی، خاکستر سیلیسی آمورف کوره ز غال سنگ که کروی شکل به نظر می رسد و از دهانه دودکش کوره خارج می شود.

اندازه ذرات خاکستر بادی بین 10 تا 40 میکرون است که انئاع ریزتر نیز دارد.

سطح ویژه خاکستر بادی بین 4/0 تا 7/0 متر مربع در هر گرم است که ر انواع ریز ممکنست به شدت افزایش یابد.

در سایر کشورهایی که نیروگاه زغال سنگی دارند خاکستر بادی توجهی حاصل می گردد و در ساخت سیمان آمیخته و یا به صورت افزودنی بکار می ر ود.

مصرف خاکستر بادی موجب به کارگیری بتن کاهش مقاومت اولیه کاهش سرعت گرمازایی کاهش نفوذ پذیری و افزایش دوام در محیط های سولفاتی و حاوی کلرید می گردد و انبساط مخرب مربوط به واکنش سنگ.دانه و قلیایی ها را کنترل می کند و مقاومت دراز را بالا می برد.

مصرف 15 تا 25 درصد خاکستر بادی جایگزین سیمان در بتن حاشیه خلیج فارس توصیه می شود اما مصرف بیشتر از 30 درصد می تواند کمکی به بالا بردن هر چه بیشتر کیفیت بتن نماید.

مصرف خاکستر بادی ممکن است به کاهش آب مصرفی بتن نیز منجر گردد.

پمپ کردن بتن حاوی خاکستر بادی بخوبی انجام می شود و سایش وسائل و تجهیزالت مشاهده نشده است.

قیمت هر کیلو خاکستر بادی معمولی در مبدا 30 تا 60 تومان و در حاشیه خلیج فارس 80 تا 120 تومان می باشد خاکستر بادی خیلی ریز کیلویی 100 تا 120 تومان در مبدا و جنوب ایران 200 تا 250 تومام می شود.

روباره ها (سرباره ها)

سرباره های اغلب کوره ای ذوب فلزات می تواند به عنوان ماده سیمانی جایگزین سیمان بکار رود.

معمول ترین سرباره مصرفی سرباره کوره بلند ذوب آهن است که در ایران تولید می شود.

در ایران از سرباره برای ساخت سیمان آمیخته سرباره ای استفاده می شود و کمتر به عنوان اقزودنی بکار می رود.

روباره ها به عوان ماده سیمانی در محیط قلیایی (آهک دار) مانند سیمان با آب ترکیب می شود و ماده پر کننده و چسباننده ایجاد می کند ولی آهک را مصرف نمی کند.

روباره ها بر خلاف پوزولان ها، ph و قلیائیت محیط را پایین نمی آورد به هر حال سرباره باید آمورف باشد و زود سرد شود.

بهتر است مصرف روباره ها به عنوان افزودنی جایگزین سیمان بیش تر از 25 وزن مواد چسباننده باشد و می توان بیش از 50 درصد نیز به کار رود.

ایجاد کندگیری در بتن کاهش جزیی مقاومت های اولیه و بهبود مقاومت های دراز مدت کاهش گرمازایی و سرعت گرمازایی کاهش نفوذ پذیری و افزایش مدوام در محیط های سولفاتی و کلریدی و کاهش انبساط مخرب مربوط به واکنش سنگدانه و قلیایی از جمله خواص سرباره در بتن است.

سرباره با ریزی 4/0 تا 7/0 متر مربع در هر گرم بکار می رود و اندازه ذرات آن تا حدود زیادی ریز تر از سیمان است.

در محیط خلیج فارس وجود سرباره ها در بتن مفید بوده است و خوردگی میلگردها را کم کرده است.

مصرف آب در بتن حاوی سرباره چندان دستخوش تغییر نمی گردد.

بکارگیری سرباره ها به همراه پوزولان ها نیز تاثیر مثبت را در این مناطق نشان داده است.

نقش مواد بازدارنده خوردگی میلگردها در بتن ها ی حاشیه خلیج فارس

Corrosoion Inhibitators, Anti-Corrosion Agents

در طول 30 سال اخیر سعی شده است از مواد افزودنی در بتن به عنوان بازدارنده خوردگی میلگردها استفاده شود.

مواد بازدارنده خوردگی به صورت های مختلف عمل می کند. انواع مهم آن بر دو قسم است. نوع آندی هچینین نوع آندی- کاتدی.

مواد آندی عمدتا به صورت نیتریت کلسیم است که در بسیاری از نقاط دنیا بکار گرفته شده است نشان داده اند که تاثیر مثبتی از خوردگی داشته اند.

تحقیقاتی که در محیط خلیج فارس انجام شده نشان داده است نیتریت کلسیم تاثیر چندان مثبتب نداشته است.

محلول نیتیرت کلسیم با چگالی 24/1 کیلوگرم در لیتر به میزان 10-15 کیلوگرم در متر مکعب بتن بکار می رود (3 تا 5/3 درصد وزن سیمان).

نیتریت کلسیم خاصیت زودگیری دارد و افت اسلامپ را بهخ شدت زیاد می کند و باید به این نکته توجه داشت.

ممکن است مصرف نیتریت کلسیم به همراه مواد پودری معدنی از خواص مثیت آن بکاهد.

مواد بازدارنده آندی - کاتدی در حدود 15 سال سال سابقه مصرف دارد و جدید تلقی می شود.

مواد بازدارنده آندی - کاتدی موجود در ایران بر پایه مشتقات آمین (استرآمین ها) می باشد.

هنوز از تاثیر دراز مدت این مواد اطلاع کافی در دست نیست و تحقیقات خاصی در ایران در این باره انجام نشده است.

برخی مواد بازدارنده خوردگی ممکن است نفوذپذیری را کاهش دهند اما سازوکار عملکرد آن ها بر پایه کاهش نفوذ پذیری استوار نیست و الکترو شیمیایی است.

نقش حفاظت سطحی در بتن حاشیه خلیج فارس

کیفیت سطحی بتن دوام به ویژه در مورد نفوذ یون کلرید و رطوبت و اکسیژن و در نتیجه خوردگی اهمیت زیادی دارد.

انواع حفاظت سطحی از دیدگاه های مختلف وجود دارد از یک دیدگاه می توان آن را به چهار نوع نقسیم کرد.

• اندود های سطحی renderings

• پوشش ها و درزگیرها coating and sealers

• پر کننده های منافذ pore blockers

• نفوذ گرها penetrants

انتخاب نوع حفاظت و پوشش سطح بتن به عوامل متعددی بستگی دارد که در زیر می آید.

• پایداری در برابر نفوذ آب دی اکسید کربن یون کلرید بخار آب و پرتو ماوراء بنفش

• پایداری در برابر عوامل شیمیایی سایش و اتصال به بتن

• سهولت اجرا، ظاهر مناسب و قابلیت پل زدن روی ترک ها

در موفقیت هر نوع حفاظت و پوشش عوامل زیر دخیل هستند.

• انتخاب صحیح نوع حفاظت با توجه شرایط محیطی حاکم و دوام ورد نظر

• شرایط بتن پایه (سن، رطوبت، دما و کیفیت سطح و کیفیت بتن)

• دقت در اجرا و شرایط لازم در اعمال هر نوع پوشش

• دما و رطوبت و شرایط هوا در هنگام اعمال پوشش

اندودهای سطحی به صورت یک لایه نسبتا ضخیم ملات سیمانی اعمال می شود و روی سطح بتن پایه معمولا به کمک ماله مناسب کشیده می شود. ملات سیمانی ممکن است فاقد مواد پلیمری باشد اما در اکثر موارد با یک ماده پلیمری (لاتکس) اصلاح می گردد.

وجود مواد پلیمری در اندود های سیمانی برای اتصال بهتر به بتن پایه و هم چنین کاهش نفوذ پذیری آن می باشد.

سطح زیرین برای اندود کاری باید تمیز و زبر و اشباع گردد و سپس اندود اصلی اجرا شود. به هر حال این نوع حفاظت افزایش ضخامت پوشش هم به حساب می آید. اتصال و پیوستگی اندود با سطح زیرین با آزمایش pull-off قابل کنترل است و مقدار مجاز آن را مشخصات فنی مشخص می کند.

پوشش ها و درزگیرها شامل موادی برای پر کردن حفرات سطحی و نفوذ در آن ها و آماده سازی سطح کار می باشد و سپس پوشش نازک سطحی اعمال می گردد.

سطح کار باید تمیز و عاری از چربی باشد در اکثر موارد بتن پایه به صورت خشک بوده یا رطوبت آن از حد معینی کمتر باشد.

شرایط محیطی مناسب یعنی زطوبت کمتر از 90 درصد و دمای 10 تا 30 درجه سانتیگراد است.

لایه پوشش اصلی دو یا چند دست اعمال می شود و ممکن است نفوذ کمی هم داشته باشد.

ضخامت پوشش اصلی همانند یک رنگ عمل می کند و جلوی نفوذ را می گیرد (Barriers) اکثر اوقات این مواد عمدتا از چسب ها تهیه می شود.

انواع معروف پوشش های سطحی عبارتند از

• اپوکسی ها (محلول در آب یا غیر محلول در آب)

• پلی استرها

• اکریلیک ها

• پلی اورتان ها

• بوتادین ها

قیر و قطران

اپوکسی ها به صورت تک جزئی و دو جزئی هستند. چسبندگب خوبی با بتن دارند مقاومت سایشی خوبی با بتن دارند و نفوذ را مهار می کنند. اختلاف ضریب انبساط با بتن و پایایی کم در برابر نو ماوراء بنفش خورشید از جمله مشکلات آن ها است. سطح زیر کار به خوبی تمیز و خشک شده باشد و گرد و خاک نداشته باشد.

مواد اکریلیکی به صورت لاتکس به همراه رنگدانه ها بکار می روند و در مقابل نفوذ مواد پایداری خوبی را دارند (به ویژه دی اکسید کربن)

پلی استرها غالبا پیوستگی خوبی دارند و در برابر اسیدها پایداری بیشتری از خود نشان می دهند.

پلی ورتان معمولان ه صورت دو جزئی دو جزئی هستند. در برابر اسیدها و سایش بهتر از اپوکسی ها می باشند اما در برابر محیط قلیایی ضعیف تر ازاپوکسی ها هستند بنابراین باید بین این پوشش و بتن یک پوشش مقاومت در برابر قلیایی ضعیف تر از اپوکسی ها هستند بنابراین بین این پوشش و بتن یک پوشش مقاومت در برابر قلیایی ها اعمال گردد. پایانی آن ها در برابر ماوراء بنفش کم است و به خوبی به سطح بتن نمی چسبد و به واسطه نیاز دارد.

قیرهای نفتی و قطران زغال سنگ از پست ترین پوشش ها هستند. در برابر نور ماوراء بنفش و تابش آفتاب پایانی ندارند و ترک می خورند و اجازه نشت می دهند. قطران در برابر نفوذ آب بهتر از قیر عمل می کند. این مواد ظاهر نامناسبی دارند و در زیر سطح زمین استفاده می شود.

پرکننده های منافذ، موادی است که بر سطح بتن اعمال می شود و به داخل منافذ و حفرات ریز بتن و خمیر سیمان نفوذ می کند و آن را پر می نماید و یا در این مرحله با اجزاء خمیر سیمان (مانند آهک) واکنش می دهد و ماده غیر محلول و چسبنده و پر کننده تولید می کند. این مواد در یک یا دو دست اعمال می شود و لازم نیست سطح بتن خشک شود و شاید مرطوب بودن آن ارجح باشد. موادی همچون سیلیکات سدیم یا سیلیکو فلوریت به صورت یک شیره محلول در آب گرم به سطح پاشیده یا مالیده می شود. به هر حال سطح باید تمیز و عاری از چربی و گرد و خاک باشد.

نفوذ گرها موادی هستند که به صورت مایع یا لزجت کم به سطح بتن پاشیده یا مالیده می شوند و به درون منافذ و حفرات ریز نفوذ می نمایند اما آن را پر نمی کنند بلکه با تعویض جهت کشش سطحی حفرات موئینه رطوبت می نمایند اما آن را پر نمی کنند بلکه با تعویض با تعویض جهت کشش سطحی حفرات موئینه رطوبت را از درون به بیرون رانده و رطوبت و گازهای زیان آور نمی تواند به درون راه یابد (مانند شیر یک طرفه) این مواد را مواد قابل تنفس (BREATHABLE) می نامند از معروفغ این مواد سیلان ها و سیلوکسان ها هستند.

نفوذ گرها برای مقابله مداوم در برابر آب چندان مناسب نیستند بنابراین این بهتر است آنها را بر روی سطوحی اعمال کرد که مرتبا در برابر آب قرار نداشته باشند اما اگر گهگاه رویارو با بارندگی یا پاشش آب یا نم باشد مشکلی ندارد.

مواد سیلان و سیلوکسان معمولا به صورت آستر و با رویه اکریلیک یا رویه پلی اورتان عملکرد بسیار مناسبی را در نفوذ یون کلرید نشان داده است.

در صورتی که بتن پایه دارای نسبت آب به سیمان زیاد باشد تجربیات نشان داده است که پوشش نفوذ گرها و سایر حفاظت ها تاثیر کمتری را از خود به جا می گذارند.

مطلب:دکتر تدین

کلینیک بتن ایران در یک نگاه

گروه بازرگانی کلینیک بتن ایران / کلینیک بتن ایران تولید کننده مواد شیمی ساختمان:

محصولات کلینیک بتن ایران:

سوپر فوق روان کننده نسل جدید بتن، روان کننده ها ی بتن، ابر روان کننده بتن بر پایه پلی کربوکسیلاتی، فوق روان کننده بتن بر پایه نفتالین، فوق روان کننده بتن کربکسیلاتی، فوق روان کننده نفتالینی، روان کننده کربکسیلاتی، فوق روان کننده بتن، فوق روان کننده نرمال بتن، فوق روان کنننده زودگیر بتن، فوق روان کننده دیرگیر بتن، فوق روان کننده آببند بتن، فوق روان کننده آب بند بتن، روانساز بتون، ابر روان کننده بتن، روان کننده نرمال بتن، روان کننده کندگیر بتن، روان کننده آببند بتن، رزین سنگ مصنوعی، رزین سمنت پلاست، گروت، گروت آماده مصرف، گروت کیسه 25 کیلوگرمی، گروت اپوکسی، گروت اپوکسی 3 جزیی، گروت خودتراز شونده، گروت ساختمانی، گروت منبسط شونده، گروت کامبکس، گروت کانراکبکس، ملات تعمیراتی اپوکسی، ملات تعمیراتی سیمانی، ملات ترمیمی اپوکسی، مکمل بتن، مکمل بتن الیاف دار، مکمل بتن با خاصیت زودگیری، مکمل بتن با خاصیت آببندی، مکمل بتن با خاصیت دیرگیر، ضد یخ بتن فاقد یون کلر، می کروسیلیس، ژل می کروسیلیس، پودر می کروسیلیکا، ژل سیلیکافیومی با خاصیت زودگیری، ژل سیلیکافیومی با خاصیت دیرگیری، ژل سیلیکافیومی با خاصیت آب بندی، ژل سیلیکافیومی الیاف دار، دیرگیر بتن، زودگیر بتون، پودر شاتکریت، ماستیک گرم ریز، ماستیک سرد ریز، ماسیتک پلی یورتان، ماستیک درزبندی، ماستیک آب بندی، ماستیک درز، پرایمر، پرایمر بتن، چسب بتن، چسب اپوکسی، چسب کاشی خمیری، چسب سرامیک پودری، چسب کاشی پودری، خمیر کاشت آرماتور، ملات خودتراز شونده بتن، کیورینگ بتن، ماده عمل آوری سطح بتن، ترمیم کننده بتن، رنگ اپوکسی، کوتینگ بتن، روغن قالب بتن، عایق امولسیونی بتن، عایق قیری بتن، عایق پلیمری، اسپیسر پلاستیکی، ضد آب کننده کریستالی بتن، مواد آب بندی بتن، الیاف روپیلن، الیاف پی پی، الیاف pp، نفوذگر بتن، واتر پروف مایع بتن، واتراستاپ، واتراستاپ بنتونیتی، واتراستاپ هیدروفیلی، واتر پروف پودری بتن، محافظ نما، هاردملات بتن، سخت کننده کف بتنی، انواع چسب کاشت بولت و کاشت آرماتور، پودر لیگنو سولفونات کلسیم، پلی کربوکسیلات، خمیر پوزولان. کلینیک بتن ایران عرضه کننده مواد ژئوسنتتیک، ژئوتکستایل، ژئوممبراین، ژئونت، تکستایل، ژئوگرید و لوازم قالب بندی، پین و گوه قالب، قالب فلزی، مهره خوروسکی، سلجر، پشت گیر قالب، بولت آب بند، بولت رزوه، میان بولت آب بند، سر شمع و سر جک، پله پی وی سی، پله، PVC.

گروه خدمات مهندسی بتن کلینیک بتن ایران:

مهندسی و اجرای ترمیم سازه های بتنی، مهندسی و اجرای طرح حفاظت از سازه های بتنی و فولادی، مهندسی و اجرای کف پوشهای صنعتی مقاوم بتنی، اجرای کف پوش های صنعتی مقاوم اپوکسی، اجرای کف پوش های صنعتی مقاوم رزینی، اجرای کف پوش اپوکسی، اجرای کف پوش رزینی، اجرای کف پوش بتنی، اجرای کف پوش انبار ها، اجرای کف پوش فرودگاه ها، اجرای کف پوش تعمیرگاه ها و اجرای کف پوش سالن های ورزشی، مقاوم سازی سازه های بتنی به روش FRP و ...، مشاوره، ارایه ی طرح و اجرای آب بندی سازه های بتنی، پیمانکار آب بندی بتن، آب بندی مخازن بتنی، آب بندی کلاریفایر، آب بندی استخر، آب بندی سازه های بتنی حجیم، مشاوره و اجرای کاشت آرماتور، بولت و کرگیری در بتن مسلح، مجری آب بندی سازه های بتنی، اجرا کننده ی ترمیم و آب بندی سازه های بتنی.

اجرای آب بندی بتن مخازن بتنی، اجرای آب بندی سازه های بتنی

اجرای آب بندی انواع سازه های بتونی نظیر مخازن بتنی، آب بندی مخازن آب تصفیه خانه های آب و فاضلاب، آب بندی استخر ها و آب بندی فونداسیون ها، آب بندی برج های خنک کن، آب بندی برج های خنک کننده، آب بندی کلاریفایر، آب بندی کولینگ تاور، آب بندی ایستگاه های پمپاژ، ترمیم و آب بندی حوضچه های بتنی، آب بندی مخازن آب آتشنشانی، آب بندی لو پیت ها، آب بندی کانال ها یا ترانشه های برق زیرزمینی، آب بندی سازه های دریایی و ... که کلینیک بتن ایران با توجه به توانایی تیم اجرایی این شرکت پروژه های متعددی در کشور و همچنین در شهر های اهواز، بوشهر، ماهشهر، بندرعباس، قشم، چابهار، بندر امام خمینی و غیره انجام داده است.

سیستم های درزگیری

درزگیر ها

اجرای درزگیری و پر نمودن درز های انبساط در کانال های انتقال آب و محوطه پالایشگاه و فرودگاه ها، درزگیری ترک های سطحی آسفالت و بتن، درزگیری باند فرودگاه ها، درزگیری پارکینگ های طبقاتی، درزگیری منابع ذخیره آب بتنی با ماستیک پلی یورتان و ... .

پوشش سطوح فلزی و بتنی

پوشش سطوح بتنی و فلزی در شرایط مغروق در آب، فاضلاب، مواد شیمیایی و بعنوان یک غشای محافظ الاستومری در تصفیه خانه های فاضلاب، خطوط لوله مخازن محیط های دریایی و ... .

سیستم های کف پوش

اجرای کف پوش های صنعتی بتنی و اپوکسی رزینی و کف سابی بتن و اجرای فوم بتن کف.

کف پوش پلی یورتان و پلی یوریا، کف پوش ضد ضربه، کف پوش ضد سایش و یکپارچه در کف پوش فرودگاه ها، کف پوش پارکینگ ها، کف پوش سرد خانه ها و کف پوش محیط های تحت تنش و لرزش، کف پوش کارخانجات شیمیایی و بهداشتی و ... .

کف سازی مقاوم بتنی صنعتی جهت پوشش کف پوش کارخانه ها و کف پوش پارکینگ ها، کف پوش کشتارگاه های صنعتی، کف پوش بتن سخت، کف پوش بتن لیسه ای و انجام و اجرای کف سابی بتن جهت صیقلی نمودن سطح بتن ناهموار و متخلخل.

سیستم های ترمیمی بتن

ترمیم بتن به منظور حفاظت از خوردگی آرماتور ها، ترمیم بتن در محیط های صنعتی داخلی و خارجی و ترمیم بتن سطوح در معرض تنش های زیاد و ترمیم بتن سنگین نظیر کف های صنعتی، ترمیم بتن پارکینگ ها، ترمیم بتن فرودگاه ها، ترمیم بتن رمپ ها و ترمیم بتن صنایع استراتژیک و ... .

تقویت سازه های بتونی با استفاده از آخرین فن آوری ها، با روش تزریق رزین FRP، کاشت آرماتور، کاشت میلگرد، کاشت بولت، مغزه گیری بتن، کر گیری، تست های غیر مخرب و آزمایشگاهی بتن.

تثبیت لایه های خاک، زیر سازی خاک، بستر سازی خاک، جداره سازی خاک، ترا نشه، آب بندی حوضچه های خاکی و کانال های سطح شهر

تثبیت دیواره های تونل ها، ترانشه های بتنی، تثبیت پی ها و جلوگیری از ادامه نشست سازه با تزریق رزین ویژه در خاک زیر پی

سیستم های رنگ های صنعتی

محافظت سطوح داخلی و خارجی مخازن آب، تجهیزات انتقال آب، لوله ها، سازه های فلزی در معرض شرایط جوی و بعنوان پرایمر سطوح فلزی در سیستم های پوششی مناطق ساحلی، کنار دریا، اسکله و سکو های نفتی.

سیستم های ایزولاسیون

پوشش های دریایی

آب بندی دریچه عرشه کشتی، آب بندی و نشتی گیری اضطراری خطوط لوله و آب بندی تجهیزات آبی، آب بندی سوخت و مواد نفتی، آب بندی سازه های فلزی، آب بندی آشیانه ی هواپیما، آب بندی سالن ها، آب بندی کارگاه ها، لوله گذاری سکو های دریایی، پوشش داخلی و خارجی در محیط های دریایی و صنعتی، تسهیلات آب بندی بندرگاهی، آب بندی سازه های دریایی، آب بندی کشتی ها، آب بندی خطوط لوله، آب بندی نیروگاه ها، آب بندی در سیستم های پوششی در محیط های بسیار خورنده دریایی و ... .

بدین جهت کلینیک فنی و تخصصی بتن ایران با در اختیار داشتن تجهیزات مورد نیاز، دانش فنی و تجربه اجرایی مربوطه نسبت به ارائه ی این خدمات تخصصی بتن به پروژه های مختلف در سطح کشور اقدام نموده است.

گروه خدمات آزمایشگاهی بتن کلینیک بتن ایران:

آزمایش های مخرب:

کلیه آزمایش های کارگاهی و دفتری تخصصی بتن مانند اسلامپ بتن، مقاومت فشاری بتن / کششی بتن / خمشی بتن / برشی بتن، دانه بندی بتن، ارزش ماسه ای بتن، نفوذ پذیری بتن، چسبندگی بتن، ارائه طرح اختلاط بتن، ارائه طرح اختلاط بتن های خاص، واکنش زایی بتن، مقاومت سایشی بتن و ... . آزمایش های سیمان بتن، آزمایش های مقاومت های کششی بتن و شیمی ایی واتراستاپ، انواع آزمایش های افزودنی های بتن.

آزمایش های غیر مخرب :

آزمایش اسکن بتن، آزمایش مغزه گیری یا کرگیری بتن، آزمایش چکش اشمیت بتن، آزمایش اسکن شبکه آرماتور، آزمایش التراسونیک بتن (شناسایی ترک بتن)

کلینیک بتن ایران در راستای همکاری با آبادگران عرصه ی عمرانی کشور آمادگی دارد در تمامی مقاطع پروژه ها همگام با کارشناسان و مهندسین قدم بردارد.



:: برچسب‌ها: کلینیک بتن ایران , بتن ,
:: بازدید از این مطلب : 231
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : یک شنبه 6 خرداد 1397 | نظرات ()
نوشته شده توسط : کلینیک بتن ایران

به وضعیتی اطلاق می گردد که برای سه روز متوالی شرایط زیر برقرار باشد تعریف هوای سرد:

الف) دمای متوسط هوا در شبانه روز کمتر از 5 درجه سانتی گراد باشد (دمای متوسط روزانه میانگین حداکثر و حداقل دمای هوا در فاصله زمانی نیمه شب تا نیمه روز است)

ب) دمای هوا برای بیشتر از نصف روز از ١٠ درجه سانتی گراد بیشتر نباشد

تدابیر احتیاطی در بتن ریزی در هوای سرد:

در بتن ریزی در هوای سرد باید دقت لازم در انتخاب مصالح مصرفی، طرح اختلاط بتن، شرایط اختلاط، حمل، ریختن و عمل آوردن بتن صورت گیرد تا اطمینان حاصل شود که بتن تازه دچار یخ زدگی بتن نگردد و بتن سخت شده نیز دارای کیفیت لازم باشد .

دمای بتن در طول مدت بتن ریزی و عمل آوردن بتن باید ثبت گردد تا اطمینان حاصل شود که محدوده توصیه شده در آیین نامه حفظ شده باشد (آبا). دمای بتن باید حداقل دوبار در شبانه روز در نقاط مختلف سازه ثبت گردد.

گوشه ها و لبه های بتن در مقابل یخ زدن آسیب پذیرند، بنابراین دمای این نقاط باید با دقت کنترل شود.

کنترل دمای مخلوط بتن و بررسی مشکلات و راهکارهای بتن ریزی در هوای سرد:

دمای مخلوط بتن:

مصالح بتن اعم از سیمان،آب، سنگدانه و افزودنی های بتن، متناسب با دمای اولیه و جرمی که دارند در تعیین دمای مخلوط بتن تاثیر گذار می باشند.

تدابیر لازم:

راه حل‌های متفاوت ومختلفی را می توان برای حل مشکلات دمایی بتن پیشنهاد نمود اما تصمیم گیری نهایی در مورد استفاده از یک یا چند مورد از آنها منوط به بررسی‌های دقیقتر و آنالیز اقتصادی هر یک از موارد می باشد. یکی از اولین و بدیهی ترین راه‌هایی که جهت بالا بردن دمای بتن به نظر می رسد گرم کردن آب مورد استفاده می باشد. همچنین محفوظ نگه داشتن منبع آب از یخ زدن، با استفاده از عایق حرارتی نظیر پشم شیشه مفید می باشد. استفاده از آب گرم معمولا برای دماهای پائین تر از ٧ درجه سانتی گراد معمول و مرسوم می باشد. دمای سیمان به هنگام تخلیه از بونکر به سیلو، طبق اندازه گیری‌های انجام شده در کارگاه، به حدود ٨٣ درجه سانتی گراد می رسد و اگر برنامه بتن ریزی به صورتی تنظیم شود که بتن از سیمان تازه تخلیه شده که حرارت بالایی دارد استفاده گردد، بتن با دمای بالاتری حاصل خواهد شد.

یکی دیگر از راهکارهای مورد بررسی این است که با تدابیر و تمهیداتی مقاومت اولیه بتن را افزایش دهیم تا تأثیر نا مطلوب کاهش دما در روند کسب مقاومت بتن، جبران شده باشد استفاده از سیمان تیپ III که دارای درصد بالایی از S، C 3 A و C 3 S موجب می شود.

مقاومت‌های فشاری ٣ و ٧ روزه به ترتیب با مقاومت‌های ٧و ٢٨ روزه بتن ساخته با تیپ I و II معادل شود. همچنین می توان با پر مایه تر کردن مخلوط بتن و افزایش عیار سیمان، مقاومت اولیه آن را افزایش داد.

تدبیر دیگر استفاده از مواد زود گیر کننده است. رایج‌ترین و پرمصرف‌ترین زودگیر کننده،کلرید کلسیم است و جزء فعال اکثر تسریع کننده هایی است که تحت عناوین تجاری مختلف فروخته می شود. استفاده از مقادیر صحیح این ماده باعث افزایش مقاومت اولیه بتن در هوای سرد و حفاظت بهتر در مقابل آسیب ناشی از دمای یخ زدگی می گردد. مقدار مصرفی کلرید کلسیم باید به میزان لازم برای حصول نتایج مطلوب، محدود شده و توصیه می شود از ٢ درصد وزنی سیمان تجاوز نکند. غالباً میزان یک درصد جهت تامین خواسته‌ها کفایت می کند .نتیجه تحقیقات نشان می دهد که افزودن کلرید کلسیم به بتن می تواند مقاومت اولیه را تا ١٠ برابر افزایش دهد.

کلرید کلسیم مانند یک کاتالیزور در واکنش هیدراتاسیون C3S عمل می کند. البته باید توجه داشت وجود کلرید کلسیم در بتن فقط در مورد بتن غیر مسلح مناسب است و در بتن مسلح موجب خوردگی فولاد می شود. برخی دیگر از تسریع کننده های حاوی سیلیکات ها و کربنات های قلیائی، فلوئوسیلیکات ها و تری آتانولامین ها نیز جهت این منظور مفید هستند.

با توجه به وضعیت زمانی و آب و هوایی که در حال حاضر در آن قرار داریم، مشکلی که با آن مواجه هستیم، دمای اولیه بتن نیست چرا که با استفاده از مطالب ذکر شده، می توان دمای بتن را آن گونه که نیاز پروژه ایجاب کندتنظیم نمود. مسأله اصلی مطرح که باید بررسی شود، دمای عمل آوری پائین است که بر روند تولید آنتی فرها تاثیر می گذارد و اثر آن به این صورت است که کسب مقاومت را کند، می کند. بحث اساسی و مسأله اصلی که باید تحلیل شود کاهش دمای متوسط هوا و بررسی تاثیر آن بر خواص بتن است.

با تدابیری که در حال حاضر اتخاذ شده است، از عایق پشم شیشه به عنوان عایق حرارتی آنتی فرها استفاده می شود. بررسی‌های موجود بر روی آنتی فرهای تولید شده نشان می دهد دمای مغزه بتن به حدود ٦٣ درجه سانتیگراد می‌رسد. همچنین دمای سطح بتن حدود ٥٣ درجه سانتیگراد شده است. این در حالی است که در همین زمان دمای محیط ١٩ درجه بوده است. این مطلب بیانگر آن است که عایق حرارتی پشم شیشه به خوبی می تواند دمای بتن را حفظ کرده و از کاهش آن جلوگیری نماید. لذا عمل آوری همه آنتی فرها در روزهای نخست در شرایط یکسان قرار داشته و بالطبع کسب مقاومت آنها نیز مشابه است .بنابراین می توان نتیجه گرفت، در شرایط موجود حتی اگر دما افت کرده باشد و به حد یخبندان هم برسد عایق حرارتی قادر است حرارت بتن را حفظ کرده و عمل آوری بتن روال معمول خود را داشته باشد. در عین حال در صورتی که این وضعیت کافی تشخیص داده نشود می توان با افزایش ضخامت لحاف پشم شیشه و دو لایه کردن آن، ضریب اطمینان بیشتری را بدست آورد.

*به طور خلاصه می توان تمهیدات زیر را جهت کنترل دمای بتن مورد نظر قرار داد:

1-بتن ریزی در نیمه دوم شبانه روز (١٢ ظهر تا ١٢ شب) جهت رسیدن به بتن با دمای بالاتر

2-عایق پوش کردن منبع آب جهت حفظ دما و جلوگیری از یخ زدگی آن

3-گرم کردن آب

4-استفاده از افزودنی های بتن که از یخ زدن بتن جلوگیری کند

5-در صورت امکان استفاده از سیمان تیپIII در صورت وجود، جهت کسب مقاومت سریعتر برای بتن‌های غیر حجیم 

6-افزایش عیار سیمان و به تبع آن رسیدن به حرارت هیدراتاسیون بیشتر و دمای بالاتر و کسب مقاومت بیشتر (برای بتن‌های غیر حجیم) استفاده از مواد افزودنی تسریع کننده مقاومت بتن حاوی کلرید کلسیم (برای بتن های مسلح کمتر از ٢ درصد 

7-دو لایه کردن لحاف پشم شیشه‌ها جهت حفظ بهتر دمای آنتی فرها 8-

بتن در دماهای بسیار پایین مقاومت بسیار کمی کسب می کند تا وقتی میزان اشباع بودن بتن در اثر عمل آبگیری به اندازه کافی کاهش نیافته باشد، لازم است که بتن تازه در برابر آثار ویرانگر یخ زدگی محافظت شود بتنی که حتی یک بار در سنین اولیه یخ زده باشد در مقایسه با بتنی که یخ نزده باشد در برابر شرایط جوی از مقاومت کمتری برخوردار است و نیز آب بند نخواهد بود. استعداد آسیب پذیری بتنی که در برابر یخ زدن محافظت نشده است خیلی بیشتر از بتنی است که در برابر یخ زدن محافظت گشته و در ضمن از مقاومت فشاری کمتری هم برخوردار است.

حال هرگاه اقدامات احتیاطی لازم به کار بسته شود می توان بتن ریزی را در سرتاسر ماه های زمستان با اطمینان خاطر انجام داد و با بکار بستن این تمهیدات هیچ کارگاهی تعطیل نخواهد شد

بتن ریزی در شرایط دمای بالاتر از 5+ درجه سانتیگراد:

در این شرایط مهمترین مسأله آمادگی برای زمانی است که جبهه یخبندان محیط کارگاه را فرا می گیرد. در این حالت اگر گیرش خمیر سیمان صورت نگرفته باشد موجب یخ زدگی رطوبت داخلی بتن، افزایش حجم آب و نهایتاً انبساط حجمی بتن و ترک خوردگی آن ، که موجب عملیات ترمیم بتن که با استفاده از مواد ترمیم کننده بتن صورت می گیرد .در زمانی که این احتمال وجود داشته باشد که چندین ساعت پس از بتون ریزی جبهه یخبندان فرا رسد باید از مواد ضد یخ بتن که ترجیحاً دارای ترکیبات زود گیر کننده هستند، استفاده نمود.

استفاده از مواد زود گیر موجب تسریع در گیرش خمیر سیمان و مقاومت در برابر افزایش حجم یخ می گردد. نباید فراموش کرد که همواره دمای بتن ریخته شده با استفاده از امکانات متفاوت گرمایشی باید در نقطه‌ای بالای 5+ درجه سانتیگراد حفظ گردد تا واکنش شیمیایی سیمان و آب ادامه یابد و مقاومت لازمه حاصل گردد.

بتن ریزی در شرایط دمای زیر 5+ درجه سانتیگراد:

موکداً توصیه می گردد در دمای کمتر از 5+ درجه سانتیگراد نباید بتن ریزی کرد مگر اینکه در تمام شرایط درجه حرارت بتن همواره بالاتر از 5+ حفظ گردد.

توجه داشته باشید که با بتن ریزی در چنین شرایطی عمل هیدراتاسیون بسیار کند صورت می گیرد بطوری‌که پس از یخ زدن آب در صفر درجه، این واکنش متوقف می گردد بنابراین در زمان باز کردن قالب مشاهده می کنیم که بتن به راحتی خورد می شود به علت اینکه خمیر سیمان تشکیل نشده است.

باید کاملاً توجه داشت که استفاده از ضدیخ تنها از یخ زدن رطوبت درونی بتن جلوگیری می کند. اگر بتن ریخته شده پس از عملیات بتن ریزی به حال خود رها شود، رطوبت درون آن یخ نمی زند اما چون دمای آن کمتر از 5+ درجه سانتیگراد است واکنش شیمیایی سیمان و آب بسیار کند می شود و به همین خاطر بتن ضایع می گردد و دارای مقاومت خیلی کمی خواهد شد.

پس در زمستان در هر شرایطی باید پس از بتن ریزی نسبت به عمل آوری بتن مبادرت ورزید نکته مهم دیگر اینکه چون هوای سرد نسبت به هوای گرم دارای رطوبت کمتری است بتن های ریخته شده در شرایط محیطی سرد به، عمل آوری و مراقبت بیشتری نیازمند است.

ویژگی های یک ضد یخ مناسب برای بتن:

ضد یخی برای بتن مناسب می باشد که علاوه بر کاهش نقطه انجماد آب اضافی داخل بتن به عنوان یک تسریع کننده در گیرش و رشد مقاومت سنین اولیه بتن عمل نماید. حال باید توجه نمود در پروژه هایی که در زمان بهره‌برداری امکان خوردگی وجود دارد و یا بتن هایی که پیش تنیده هستند و یا در آنها از آلومینیوم و گالوانیزه استفاده شده است و یا بتن هایی که در تماس با آب یا خاک سولفاته هستند و یا بتن هایی که سنگدانه‌های آنها مستعد واکنش قلیایی هستند به هیچ وجه از ضد یخ های کلر دار استفاده نکنید. بلکه از ضد یخ هایی استفاده نمایید که بر پایه دیگر مواد(نیترات) ساخته شده باشد

توصیه‌های مهم:

حال برای اینکه بتوانیم در زمستان بتن ریزی مناسب و مطمئنی داشته باشیم بهتر است که نکات زیر را رعایت کنیم:

امید است با توجه و رعایت نکات ذکر شده هیچ گاه پروژه ای بر اثر سرما و یخ زدگی در زمستان تعطیل نگردد.

1-میانگین دمای هوای شبانه روز کمتر از 5+ درجه سانتیگراد باشد. (منظور از میانگین دمای هوای شبانه روز، میانگین حداقل و حداکثر دما در طول ٢4 ساعت می باشد)

2- در نیمی از ساعات شبانه روز دمای هوا از ١٠ + درجه سانتیگراد بالاتر نرود

3- استفاده از سیمان با مقاومت زودرس

4- استفاده از ضد یخ مناسب

5-سطوح قالب ها و آرماتورها را از یخ و برف بزدایید و در صورت لزوم آنها را گرم نمایید تا حداقل دمای ٢+ درجه سانتیگراد را داشته باشد

6-در درجه حرارت 5 + و بالاتر پس از استفاده از مواد ضد یخ، بتن را کاملاً با استفاده از پوشاننده‌های مناسب (برزنت، نایلن و غیره) بپوشانید و محیط را گرم نگه دارید تا در شب هنگامی که هوای گرم فرا می رسد بتن دچار ترک خوردگی نشود

7-در شرایط دمایی زیر 5+ با گرم کردن سنگدانه‌ها، قالب‌ها و آب (به ترتیب) دمای بتن را در حین کار بالای5+ درجه نگه داشته و سپس بتن را با پوشش مناسب گرم نگه دارید

8- مصالح مصرفی جهت ساخت بتن را در معرض وزش باد و هوای سرد قرار ندهید

9- استفاده از سیمان زود گیر (پرتلند نوع ٣) مناسب است

10- استفاده از سیمان های روباره ای وآمیخته توصیه نمی شود

11-استفاده از مواد حباب زا در بتن‌هایی که در معرض یخ و آب شدن های متوالی قرار می گیرند الزامی است

12- سنگدانه ها نباید آغشته به یخ و برف باشند (گرم کردن ماسه و استفاده از آب گرم )

W/C < 0.5- 13-

14- اگر از روان کننده بتن استفاده نشده است اسلامپ نباید بیشتر از 5٠ میلیمتر باشد

نکته: استفاده از کلرید کلسیم در بتن مسلح مجاز نیست ( در بتن غیر مسلح به عنوان تسریع کننده می توان حداکثر تا 2 درصد وزنی سیمان از آن استفاده نمود)

مطالب : مهندس علیرضا مهتدی


نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 

 



:: برچسب‌ها: کلینیک بتن ایران , بتن ,
:: بازدید از این مطلب : 252
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : یک شنبه 6 خرداد 1397 | نظرات ()
نوشته شده توسط : کلینیک بتن ایران

بتن ریزی در زیر آب در ساختمانهای دریایی و آبی به کار می رود و لازمه آن :

کاربرد روشهای ویژه برای جلوگیری از خطر آب شستگی است ،

استفاده از فرمول مخصوص برای ترکیب بتن ، تا بتون همگنی خود را به هنگام فرو رفتن در آب حفظ کند .

1-روشهای مورد استفاده

برای بتن ریزی در زیر آب، چندین روش به کار برده می شود که تمام آنها حاصل یک اصل می باشند : به استثنای اولین بتنی که در زیر آب قرار داده می شود ، بقیه باید طوری ریخته شوند که در تماس با آب واقع نشوند ، بیشترین طرق مورد استفاده به شرح زیرند :

* روش پشته پیشرو

این روش در جاهایی به کار می رود که عمق آب کم بوده (حداکثر 8ر0متر9 و آب به حد کافی آرام باشد . روش این است که ابتدا مقداری بتن در آب ، روی شیب ساحل ، می ریزند، تا سطح بتن به بالای آب برسد ، سپس بتن ریزی را روی آن ادامه می دهند . بتن جدید مقداری را که اول ریخته شده به طرف آب می راند ، و این بتن است که در ادامه بتن ریزی ، در تماس با آب خواهد بود و بقیه محفوظ خواهد ماند .

* روش بتن ریزی با لوله در داخل آب

این روش به کار می رود و نتیجه بهتری دارد . طریقه عمل این است که لوله ای فلزی ، به قطر 25 تا 45 سانتی متر ، که به طور موقت پاین آن را بسته اند ، در آب فرو برده می شود و از داخل آن بتن را به پایین می فرستند ، و موقعی که وزن بتن ریخته شده از رانش آب روی دهانه بیشتر می شود ، بتن بیرون می ریزد و توده هایی به شکل حباب تشکیل می دهد که به تدریج که بتن اضافه می کنند ، بزرگتر می شود .

لازم است که انتهای لوله در داخل بتن ریخته شده باقی بماند تا اثر آب فقط بر رویه حباب محدود گردد . این روش ، به ویژه برای بتن ریزی در زیر آب پی پیاه های پلها (تحت حفاظت سیرهای فلزی یا سد موقتی) و برای بتن ریزی شمع ها و دیوارهای جدا کننده ، در زر گل بنتونیت ، به کار برده می شود .

2-مشخصات بتن ریخته شده در زیر آب

مشخصات بتن مورد استفاده در زیر آب را باید آزمایشگاه متخصص و با سابقه در این نوع کار تعیین کند ، و نکات زیر رعایت شود :

چون بتن را زیر آب نمی توان لرزش داد ، لذا باید سفتی بین 14 تا 16 سانتی متر داشته باشد که با اضافه کردن موادی که حالت خمیری به بتن بدهد و یا آن را روان تر نماید می توان تامین کرد .

مواد ریز کوچکتر از 80 میکرون (که ذرات سیمان هم جزو آن است) بیشتر از 400 کیلوگرم در متر مکعب بتن باشد ، تا در مقابل آب شستگی بهتر مقاومت کند .

غالباً افزودنی های بتن کاهنده مقدار آب و دیر گیرکننده بتن به کار گرفته می شوند .

موسساتی که بتن آماده به کار تهیه می کنند ، در این موارد موادی از نوع کولوییدها به صورت گرد به بتن در حال مخلوط شدن اضافه می نمایند . این مواد با اجزای ریز بتن پوششی را به وجود می آورند ، که در برابر شسته شدن مقاوم است .

برقراری پناهگاه حفاظتی

این عمل در تکمیل روش هایی که ذکر شد و برای کاهش اثرات تشعشع آفتاب یا باران بر روی بتن تازه انجام می شود. ضمنا نباید برقرار کردن پرده هایی را در دو طرف ساختمان که جریان هوا را از روی بتن محدود می کند (جریان هوایی که سبب تسریع تبخیر می شود) فراموش کرد.

3-شرایط اجرایی عمل آوری بتن (کیورینگ)

عمل آوری بتن پس از قالب برداری و بر حسب طول مدتی که قالب بر قرار بوده انجام می شود.

اگر روی بتن قالب بندی نداشته باشد مانند کف ها ، سطوح بالای تیرها ، و سطوح از سرگیری بتن ریزی ، عمل آوری بتن بلافاصله پس از اینکه آب زیادی را از دست داد (سطح بتن مات شد)، انجام می شود :

طول مدت ادامه عمل آوری تابع چندین عامل است:

سرعت سخت شدن بتن که تابع طبقه مقاومت بتن است،

رطوبت نسبی هوا،

گرمای هوا،

باد،

تابندگی آفتاب،

از سرگیری بتن ریزی

کمتر اتفاق می افتد که یک سازه بتنی در یک مرحله بتن ریزی شود . لذا باید در پایان بتن ریزی مرحله اول، و در ابتدای مرحله بعدی، ترتیباتی اتخاذ گردد که ظاهر بتن قابل پسند شود، و به پیوستگی مکانیکی هم خدشه ای وارد نگردد .

برای تامین زیبایی منظر ، به هنگام تهیه طرح ، مقاطع از سرگیری بتن ریزی را مشخص می نمایند و برای حسن انجام کار باید:

روی قالب ها ، در نقاط تعیین شده قطعه چوبهای تراشیده ای قرار داد تا در سطح بتن یک خط صاف به وجود آورد ، و یا در خط از سرگیری بتن ریزی "فرو رفتگی ایجاد شود که جزیی از منظره بنا به چشم آید . ضمناً ضخامت پوششی میله های فولادی در مقطع فرو رفته باید کافی باشد .

نقشه آهن بندی باید طوری تهیه شود که از سرگیری بتن ریزی در مقطع پیش بینی شده میسر باشد ، البته آهنهای انتظاری که احیاناً لازم باشند ، در نقشه منظور شده باشد .

در از سرگیری بتن ریزی باید دو گونه آماده سازی ، هر دو روی بتن مرحله اول رعایت شود : یکی بعد از بتن ریزی مرحله اول و دوم قبل از شروع بتن ریزی مرحله دوم .

1-آماده سازی بعد از بتن ریزی مرحله اول

از سرگیری بتن ریزی ممکن است در سطحی افقی یا سطحی قائم انجام شود ، ولی در هر حال باید سطح بتن قبلی زبر و عاری از شیره سیمان و گردوخاک و برآمدگی و تیزی قابل خورد شدن و ضایعات بتن و هر نوع ماده خارجی باشد .

اگر سطح بتن ریزی افقی باشد ، ولو اینکه در آن آهنهای انتظار وجود داشته باشد ، بتن ریزی به سهولت انجام و سطح افقی به آسانی به دست می آید . ولی برای سطوح قائم لازم است قالبی قبلاً قرار داد تا کار به نتیجه برسد .

قالب برای از سرگیری بتن در سطح قائم ممکن است :

مانند سایر سطوح قسمت مورد عمل بنا باشد،

به ترتیب فوق ولی با نصب شبکه فولادی یا قطعه فلز گسترده ،

یا با شبکه فلزی ریز بافت که به وسیله گیره هایی کشیده شده و در جا نگهداری شده باشد .

آماده کردن محل از سرگیری بت ممکن است در زمانهای مختلف پس از بتن ریزی مرحله قبلی انجام شود:

- حالت بتن نسبتاً تازه و یا در حال گیرش (حدود 2 تا 3 ساعت پس از بتن ریزی)

آماده سازی محل از سرگیری بتن ، در این حالت تنها در سطوح افقی میسر است ، و عبارت است از شستن سطح بتن با آب تحت فشار خفیف (5 بار) که شیره سیمان را پاک کرده و سنگدانه های داخل بتن را آشکار می سازد .

- حالت بعد از پایان گیرش بتن (3 تا 24 ساعت پس از بتن ریزی)

در این حالت ، آماده سازی ممکن است هم در سطوح افقی و هم در سطوح قائم ، بلافاصله پس از قالب برداری و کندن شبکه فلزی انجام شود . طرز عمل این است که سطح بتن با آب تحت فشار تا حدی که مورد نظر است پاک شود .

- حالت پس از سخت شدن بتن
این روش که در تمام موارد قابل اجراست ، از سایر موارد گرانتر است و در آن چکش هوایی یا کلنگ حجاری به کار برده می شود و در پی آن ، با هوای تحت فشار سطح بتن را پاک می کنند . این روش تنها در صورتی که نتوانسته باشند در شرایط قبلی اقدام کرده باشند ، اجرا می شود .

- به تاخیر انداختن سخت شدن بتن

یک ماده تاخیر کننده گیرش روی سطح بتن می پاشند ، تا بتوانند بدون مشکلات اضافی ، کار از سرگیری بتن را به تاخیر اندازند . در این مورد باید حداکثر توجه به سطح مورد نظر معطوف گردد ، زیرا هر تجاوزی که به سطح مورد نظر بشود ، در موقع به کار برد هوا فشرده یا آب تحت فشار ، منجر به خسارت دیدن آن خواهد شد .

برای سطوح قائم ، بهتر است یک کاغذ مخصوص آغشته به ماده تاخیر کننده روی سطح مورد نظر چسبانده شود . در مواردی که آب تحت فشار به کار برده می شود ، باید آب یا شی به حد وفور انجام شود تا تمام آبهای آلوده به شیره سیمان تخلیه گردد .

2- آماده کردن محل قبل مرحله دوم بتن ریزی

برای اینکه بتن مرحله دوم بتواند گیرش را در شرایط مناسب انجام دهد ، و با بتن مرحله اول یک پارچه گردد ، کاری که معمولاً انجام می دهند ، اشباع کردن سطح بتن مرحله اول از آب است تا سطح خشک بتن مرحله ، آب بتن مرحله دوم را نکشد .

بررسیهای زیادی جهت تهیه چسبهایی خاص برای بتن انجام شده ، که از سرگیری بتن ریزی آسان گردد . این مواد گاهی "مواد چسبان" نامیده می شود . هر چند آنها گران قیمت هستند ، ولی نتیجه کاربردشان رضایت بخش است . با این وجود در هر مورد حساسیت آنها به آب باید بررسی شود .

کاربرد بتن در شرایط جوی سخت

هنگامی که در کارگاه ، درجه گرمای هوا کمتر از 5 درجه سانتی گراد ، و یا بالاتر از 25 درجه باشد ، باید ترتیبات خاصی هم در مرحله بتن سازی و هم در مرحله کاربرد آن اتخاذ شود .

انواع محصولات بتنی

با قرار دادن اعضای کششی در قطعات بتنی توان کششی آنها را بالا می برند. این تکنیک محصولات بتنی را به دو دسته اصلی قطعات بتنی غیر مسلح و قطعات بتنی مسلح تقسیم می نماید.

با بالا رفتن مهاجرت به شهر و گسترش جمعیت در آنها ، نیاز به ابنیه روز به روز افزایش می یابد. این مساله متخصصان دانش ساختمانی را بر آن داشت که در شرایط مطلوبی که در کارخانه ها فراهم می آورند در تمام طول سال قطعات بتنی را در مدت زمان کوتاه ریخته و آماده مصرف نمایند.این پیشرفت قطعات بتنی را به دو سته کلیمحصولات بتنی در محل ریخته شده و محصولات بتنی پیش ساخته تقسیم می نماید.

بتن مسلح

بتن در برابر فشار مقاوم است ، مقاومت آن در برابر خورد شدگی بین N/mm2 20 – 40 است و این مقدار در بتن های محکم N/mm2 100 می باشد. با این حال مقاومت بتن در برابر کشش فقط 10 در صد مقاومت فشاری آن است. فولاد به عنوان یک ماده تقویت کننده در همه جا پذیرفته شده، چون مقاومت کششی بالایی دارد و ضریب انبساط حرارتی آن نزدیک به بتن است. قرار گیری فولاد در بتن مسلح بسیار مهم است. و باید اطمینان حاصل کرد که نیروه های کششی و برشی بر فولاد منتقل می شوند. میلگردهای طولی نیروهای کششی را تحمل می کنند در حالی که میلگرد های عرضی ( خاموت) نیروهای برشی را متحمل می شوند و همچنین فولا را در داخل بتن ثابت نگه می دارند . به همبن دلیل خاموت ها بیشتر در محل هایی که نیروی برشی زیاد است و جود دارند، هرجند می توان از خم کردن میلگرد نیز برای این منظور استفاده کرد.

فولاد مورد استفاده در بتن مسلح به صورت میلگرد ، میلگرد آجدار و یا میلگرد آجدار تاییده تولید می شود . فولاد با مقاومت بالا نیز با نورد گرم به میلگرد آج دار تبدیل می شود و همچنین با آهنکاری سرد به به میلگردهای تاییده آجدار تبدیل می شود.

حد اقل مقاومت متوسط فولاد با مقاومت بالا N/mm2 460 است ، تقریبا دو برابر فولاد معمولی . از فولاد ضد رنگ می توان در جاهایی که خطر خوردگی و جود دارد برای بتن مسلح استفاده کرد. شبکه های فولادی جوش کاری شده ( مش ) نیز برای تقویت دال های بتنی ، راه ها و بتن پاشیده شده به کار می رود.

پیوند بین بتن و فولاد

برای اینکه بتن مسلح بتواند به عنوان یک ماده مرکب عمل کند باید پیوند بین بتن و فولاد محکم باشد ، به این ترتیب همه نیروهای کششی به فولاد منتقل می شوند.

شکل و وضعیت سطح فولاد و کیفیت بتن همگی بر قدرت پیوند تاثیر می گذارند.

برای اینکه کارآتر ین پیوند ممکن به دست بیاید ، باید سطح فولاد پوسته به صورت زنگ نداشته و چرب نباشد ، ولی لایه نازک رنگی را که معمولا در نگه داری در کارگاه ایجاد می شود نباید برداشت. استفاده از انتهای قلاب شده در میلگرد معمولی خط بیرون آمدن میلگردها از بتن را تحت بار کاهش می دهد، ولی بهترین چسبندگی در میلگردها ی آجدار ، که در تمام طول خود با بتن با بتن درگیر می شوند ، به و جود می آید.گاهی تقویت بتن با استفاده از قفس های پیش ساخته ( که می توان آنها را به جای بست ها و با مفتول های آهنی با جوش کاری به هم متصل کرد) انجام می شود . البته باید دانست که جوش کاری خیلی به ندرت در کارگاه بر روی خاموت ها انجام می گیرد.

این اتصالات را می توان به راحتی با مفتول فولادی که با پیچاندن سفت می شود ، محکم کرد. از فاصله نگه دارها برای تامین فاصله مناسب بین تقویت کننده ها و سطح قالب بندی استفاده می شود.

بتن مرغوب چگال بهترین پیوند با فولاد را ایجاد می کند، باید بتن اطراف میلگردها را به خوبی متراکم کرد. بنا بر این اندازه دانه بندی سنگی در بتن نباید بیش از حد اقل فاصله قطعات فلز باشد.

خوردگی فولاد در بتن مسلح

فولاد در صورتی که بتن اطراف آن مرغوب باشد به خوبی متراکم شده و خود گیری آن کامل باشد ، خودگی ندارد محیط قوی قلیایی داخل بتن ( بر اثر سیمان هیدراته ) فولاد را حفظ می کند . اما ، اگر به دلیلی فضای خالی ایجاد شود یا پوشش کافی نباشد فولاد خراب می شود. ازدیاد حجمی که در اثر زنگ زدگی ایجاد می شود سطح فولاد را پوسته پوسته می کند و در نتیجه فولاد عریان می شود و زنگ زدگی پیشرفت می کند و در نهایت زنگ در به سطح بتن رسوب می کند. در بتن مسلح نباید از زود گیرهای کلرید کلسیم استفاده کرد.چون پس مانده آن باعث خوردگی سریع فولاد می شود.برای محافظت بیشتر در برابر خوردگی می توان از فولاد ضد زنگ یا فولاد گالوانیزه ، با پوشش اپوکسی استفاده کرد.

سطح بتن بر اثر عمل کربناسیون حالت قلیایی خود را از دست می دهد و این باعث عدم محافظت از فولاد می شود . عمق کربناسیون به نفوذ پذیری بتن ، مقدار رطوبت و ترک خوردگی در سطح آن بستگی دارد. به همین دلیل میزان اسمی پوشش محافظتی فولاد داخل بتن بر اساس میزان پیش بینی شده شرایط محیطی و درجه بندیمقاومت بتن محاسبه می شود.

میزان محافظت شده محاسبه شده برای همه نو مسلح کننده از جمله میلگرد ، مفتول و الیاف مسلح کننده ثابت اعتبار دارد . گاهی می توان میزان کربناسیون را با استفاده از پوشش های محافظتی کاهش داد.

در حالی که در مورد ضخامت بتن پوششی اطراف اجزای کششی شک داریم می توان با یک دستگاه پوشش سنج ضخامت بتن را اندازه گرفت. اگر فولاد در بتن در حال پوسیدگی باشد می توان از محافظت کاتدیک به

وسیله یک جریان پیوسته که به فولاد وارد می شود برای جلو گیری از پوسیدگی بعدی استفاده کرد، این کار بتن کربناته را دوباره قلیایی می کند.

بتن پیش فشرده

مقاومت بتن در برابر فشار بالا است ولی در مقابل کشش ضعیف است. ایجاد پیش فشردگی در بتن با کابل های فولادی باعث می شود بتن همواره در تنش فشاری باقی بماند و در نتیجه میزان بار بری آن افزایش خواهد یافت. چون کابل ها در حالت فشرده قرار دارند و هر نیرویی را به نیروی فشاری تبدیل می کند و هیچ ضعفی در مقطع بتنی ایجاد نمی کند و بتن فقط تحت بارهای بسیار زیاد به کشش می افتد و ترک می خورد.

برای پیش فشرده کردن بتن دو سیستم متفاوت وجود دارد . در پیش کشیدن ، کابل ها قبل از خود گیری بتن کشیده می شود و در پس کشیدن کابل ها پس از سخت شدن بتن کشیده می شوند.

پیش کشیدن

تعداد زیادی از قطعات بتن پیش فشرده ، از جمله دال ها ی کف با روش پیش کشیدن تولید می شوند. کابل ها را به صورت آزاد در داخل قالب قرار می دهند و با دستگاه مخصوص کشش لازم را وارد می کنند. بتن ریزی را انجام می دهند و به کمک لرزاندن ، هوای آن را تخلیه می کنند و شرایط لازم برای انجام خود گیری سریع تر را فراهم می کنند.طول اضافی کابل ها را که در دو انتها به کمک قطعات مخصوص صابت شده اند می برند و بتن را تحت فشار رها می کنند . مانند بتن مسلح پیش ساخته مقطع و محل قرار گیری کابل ها بر اساس بارها ی محاسبه شده مشخص و رعایت می شود .

پس کشیدن

در روش پس کشیدن ، کابل ها را در قالب کار، داخل غلاف هایی قرار می دهند ، بتن ریزی را انجام می دهند و وقتی به اندازه کافی خود را گرفت دو سر کابل ها را به طرف بیرون می کشند . این کار به وسیله گوه های مخصوصی که به دو سر سیم ها بسته می شوند و پس از قطع شدن کشش محکم می شوند انجام می گیرد.

معمولا بتن را به ویژه در نزدیکی گوه

ها ، مسلح می کنند . در یک روش پس از کشیدن فضاهای خالی داخل غلاف را با دوغاب مخصوص پر می کنند . این کار فشار بر قلاب ها را کاهش می دهد. البته در روش دیگر سیم ها رها می مانند تا در داخل بتن آزادانه حرکت کنند. غلاف ها از تسمه های گالوانیزه یا پلی تن سنگین ساخته می شوند. ضریب پس کشیدن بر پیش کشیدن این است که می توان آنها را خمیده کرد تا در مسیر تنش قرار گیرند. به این ترتیب می توا ن بتن را به شکلی ریخت که کمترین حجم ممکن را داشته باشد . در تخریب یا دوباره سازی بهتر است بتن های پیش فشرده نچسبیده را از فشار خلاص کرد. البته تجربه نشان داده است که در صورت آزاد نکردن قطعه از فشار خطری ایجاد نمی شود. در دوباره سازی و تعییرات، سیم های تحت فشار گاهی باید دوباره قلاب دار و فشرده شوند. البته استفاده از بتن پیش فشرده جلوی جا به جایی سازه ای را نمی گیرد

بتن در نما

در بتن نما ، چه پیش ساخته چه در کارگاه نه تنها به کنترل کیفیت بالایی نیاز است بلکه باید مشخصات و جزئیات مصالح را کاملا و با دقت در نظر گرفت . و یک سطح پایانی مرغوب که هوا زدگی شکل آن را به هم نریزد به دست آورد.

عوامل اصلی موثر در ظاهر بتن عبارتند از :

- ترکیب مخلوط اولیه ( نسبت ها ، نوع مواد )

بتن پیش ساخته

قطعات بتن پیش ساخته به صورت عمودی یا افقی هستند.البته نوع دوم فراوان است.به هر حال در قطعه نما دار و یا بدون نما رعایت مشخصات وکنترل کیفیت از اهمیت زیادی برخوردار است.قالب ها معمولا از تخته چند لا یا فولاد ساخته می شوند. هرچند قالب های فولادی با دوام ترند و برای استفاده مداوم منااسب می باشند، در کارهایی که فرم های پیچیده دارند از قالب های چوبی استفاده می شود. زیرا آنها را راحت تر می توان به شکل مورد نظر درآورد. قالب ها طوری طراحی می شوند که بتن به آنها نچسبد و اندازه های آنها دقیق باشد تا از کیفیت کاراطمینان حاصل شود.

از آنجایی که برای ساخت قالب ها قیمت بالایی پرداخت می شود ، در کارها ی اقتصادی باید تعداد طرح های مختلف را کاهش داد. این مضوع می تواند اثر محسوسی در زیبایی ساختمان بگذارد .اتصالات و نگاهدارنده ها باید در داخل بتن کارگزاشته شوند و معمولا به قطعات کششی داخل بتن وصل می شند.

بتن کارگاهی

کیفیت بتن کارگاهی بستگی زیادی به قالب کار دارد، چون هر نقصی در بتن منعکس می شود. قاب باید به اندازه کافی محکم باشد تا فشار بتن تازه را تحمل کند و اتصالات باید بتوانند جلوی نشت بتن یا دوغاب آن را بگیرند. که در غیر این صورت سطح بتن به هم می ریزد . برای ساخت قالب می توان از انواع چوب ، فلزات و پلاستیک ها بسته به سطح نهایی دلخواه استفاده کرد،بهتر است برای حفظ و نگهداری از قالب ها و مهمتر از همه سطح بتن مورد نظر بتن ریزی از روغن قالب استفاده گردد.

مطالب: مهندس علیرضا مهتدی

نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 

 



:: برچسب‌ها: بتن ,کلینیک بتن ایران ,
:: بازدید از این مطلب : 240
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : یک شنبه 6 خرداد 1397 | نظرات ()
نوشته شده توسط : کلینیک بتن ایران

بتن الیافی نوعی بتن است که در ساخت آن از الیاف استفاده می‌کنند و سیمان، آب، سنگدانه و مواد افزودنی را همراه با الیاف مخلوط می‌کنند، الیاف باعث افزایش پیوستگی، مقاومت کششی، کاهش ترک های بتن و افزایش نرمی بتن میگردد. جنس الیاف و اندازه آنها به نوع مصرف بتون و مقاومت کششی مد نظر بستگی دارد. الیاف می‌تواند الیاف شیشه یا الیاف فلزی و یا الیاف پلیمری باشد و اندازهٔ آنها معمولاً 3 الی 20 میلیمتر است .

الیاف فولادی

الیاف فولادی در اندازه های مختلف تولید میشود که مشهور ترین آن الیافی است که از مقطع دایره ای تهیه میگردد .

کاربرد الیاف فولادی در مسلح ساختن بتن های غیر سازه ای و کف سازی ها باعث حذف مش و میلگرد شده و نیز میتوان از ضخامت لایه بتنی کاست درضمن ، در سقفهای کامپوزیتی اضافه کردن الیاف فولادی به بتن باعث حذف میلگرد گذاری میگردد . مقاومت این گونه سقف ها در برابر آتش سوزی تا 1500 درجه سانتیگراد میباشد .

در ساخت بنادر و یارد های ساحلی با توجه به شرایط خوردگی و بارهای سنگین و همچنین لرزش بر اثر حرکت ماشین آلات سنگین ، استفاده از الیاف فولادی در بتن بهترین راه حل جهت افزایش دوام و کارایی بتن میباشد

در ساخت اتوبان ها با روکش بتنی به جای آسفالت استفاده از الیاف فولادی باعث افزایش مقاومت کششی سطح جاده و همچنین مقاومت بالا در برابر نفوذ آب و مایعات (خصوصا نمک) می شود که با توجه به این خصوصیات میتوان از قطر پوشش بتن نیز کاست .

کاربرد در تونل سازی : در ساخت تونل ها با دستگاههای حفار تمام اتوماتیک ، قطعات پیش ساخته میبایستی از درون تونل به دستگاه هدایت شده و در مکان خود نصب گردند . فن اوری بالای ساخت این قطعات به لطف استفاده از الیاف فولادی باعث مقاومت بالا در برابر ضربه ناشی از جابجایی و همچنین مهار فشار های وارده از دیواره های تونل میگردد .

در بتن های پاششی ( شاتکریت) جهت تثبیت خاک در انواع حفاری ها ( تونل سازی ، راهسازی و...) استفاده از الیاف فولادی با طول کوتاه تر میتواند باعث حذف مش گذاری گردد . که علاوه بر کاستن از هزینه ها باعث بالا رفتن ایمنی و سرعت و مقاومت کار میگردد.

الیاف پروپیلن

بتن با مقاومت بالا دارای معایبی همچون شکنندگی و عدم مقاومت در برابر آتش سوزی می باشد. جهت رفع این نقیصه میتوان از الیاف پلی پروپیلن با توجه به خواص مطلوب و اقتصادی بودن آن استفاده کرد.استفاده از مقادیر معین از الیاف در مخلوط بتن بر خواص مکانیکی آن تاثیر نا مطلوب نخواهد داشت.الیاف پلی پروپیلن براستحکام فشاری و مقاومت حرارتی بتن تاثیر میگذارد.

از جمله محاسن بتن های مصلح(الیافی) ودارای مقاومت بالا، بهبود خواص مکانیکی و کاهش نفوذپذیری ،مقاومت شیمیایی بالا در برابر عوامل مخرب و مقاومت در برابر ضربه های مکانیکی شدید می باشد. در کنار محاسن یاد شده، شکنندگی و مقاومت کم در برابر حرارت و آتش از معایب بارز این گونه بتنها محسوب می شود.از آنجایی که مقاومت و نرمی، دارای نسبت عکس می باشند، بتنهای با استحکام بالا از بتن های معمولی شکننده ترند.

ویژگی ها

• در سنین اولیه بتن، از هنگام بتن ریزی تا 24 ساعت بعد، مقاومت کسب شده توسط بتن ناچیز است و کمترین تنشی می تواند منجر به ترک خوردگی شود. مقاومت کششی بسیار زیاد الیاف پلی پروپیلن در این زمان، باعث عدم ترک خوردگی بتن میشود.

• الیاف پلی پروپیلن باعث جلو گیری از آب انداختگی بتن شده و از انتقال آب به سطح بتن جلوگیری می کند که نتیجه آن همگن شدن بتن و یکسان بودن نسبت آب به سیمان در تمام بتن و تداوم عمل هیدراتاسیون می باشد.

• الیاف پلی پروپیلن باعث جلوگیری افزایش چشمگیر مقاومت بتن در برابر بارهای ضربه ای می شود که این امر در بارگذاری دینامیکی مانند تند بادها، زلزله ارتعاش ماشین آلات سنگین و انفجار ... اهمیت دارد.

• استفاده از الیاف پلی پروپیلن باعث افزایش مقاومت کششی، خمشی و برشی بتن می شود و بتن بعد از شکست یکپارچه باقی می ماند. افزایش مقاومت در برابر سیکل های ذوب و انجماد که ناشی از کاهش نفوذ پذیری بتن بوده و افزایش مقاومت در برابر خستگی، سایش و کاویتاسیون از دیگر مزایای استفاده از الیاف پلی پروپیلن می باشد.

مزایا و مقایسه فنی بتن حاوی ژل سیلیکافیوم الیاف دار بتن برای ساخت بتن الیافی کلاس AP2RB نسبت به بتن حاوی ژل میکروسیلیس P1RB :
مقاومتها - نفوذ پذیری آب و نفوذ پذیری عوامل مهاجم بیرونی در بتن الیافی حاوی ژل سیلیکافیوم دارای الیاف پلی پروپیلن - ضریب وارفتگی بتن الیافی حاوی ژل سیلیکافیوم دارای الیاف پلی پروپیلن - مقاومت سایشی بتن الیافی حاوی ژل سیلیکافیوم دارای الیاف PP - مسائل حرارتی در بتن الیافی حاوی ژل سیلیکافیوم دارای الیاف PP - واکنشهای شیمیایی در بتن الیافی حاوی ژل سیلیکافیوم AP2RB - افزایش روانی بتن بدون نیاز به فوق روان کننده ها

ژل سیلیکافیوم الیاف دار بتن برای ساخت بتن الیافی کلاس ژل AP2RB نه تنها با بالا بردن مقاومت بتن در برابر عوامل مخرب فیزیکی و شیمیایی محیطی و حتی عوامل مخرب داخلی بتن، عمر سرویس دهی سازه را به حداکثر می رساند،بلکه از آسیبهای احتمالی دراز مدت ناشی از عدم دقت در کیورینگ مناسب طی ساعات اولیه پس ازریختن بتن الیافی تا حدود زیادی میکاهد.

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 

 



:: برچسب‌ها: کلینیک بتن ایران , بتن , بتن الیافی ,
:: بازدید از این مطلب : 242
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : یک شنبه 6 خرداد 1397 | نظرات ()
نوشته شده توسط : کلینیک بتن ایران

 

• مصالح ساختمانی گوناگونی از دیرباز توسط انسان مورد استفاده قرار گرفته است. در این میان شاید بتوان از چوب، سنگ، فولاد و بتن به عنوان پرمصرف ترین مصالح ساختمانی نام برد. بتون که در حقیقت یک نوع سنگ ساخته دست بشر است، از مقاومت فشاری قابل قبول و مقاومت کششی بسیار پایین (در حدود 10% مقاومت فشاری) برخوردار است. از طرفی در بسیاری از قطعات سازه ای، کشش مستقیم ویا کشش ناشی از خمش ایجاد می شود. به همین جهت برای جبران ضعف مقاومت کششی بتن، ایده ی بتن مسلح ابداع شده است. در این روش، در هر قسمت که قطعه ی سازه ای تحت کشش (کشش مستقیم یا کشش ناشی از خمش) قرار گیرد، از فولاد به عنوان یک ماده ی مقاوم در مقابل کشش ایجاد شده، استفاده میگردد.

• اگرچه ایده ی اولیه در ابداع بتن مسلح، اگذاری نقش مقاومت در مقابل تنش های کششی به فولاد بوده است؛ با این وجود فولاد می تواند به عنوان یک عنصر کمکی در تحمل فشار نیز در کنار بتن قرار گیرد. به همین دلیل میلگردهای مسلح کننده در قطعات فشاری نظیر ستون ها و یا حتی در ناحیه فشاری تیرها به عنوان فولاد فشاری نیز به کار رود.

• توجه شود که در یک مقطع بتن آرمه، ممکن است ترک های کششی در ناحیه کششی بتن و در جهت متعامد نسبت به جهت تنش های کششی ایجاد شوند. این ترک ها ممکن است از میلگردهای کششی نیز عبور کرده و تا نزدیکی های تار خنثی بالا روند. با این وجود، معمولا عرض این ترک ها بسیار محدود بوده (کوچکتر از 3/0 میلی متر) و در عملکرد قطعه بتن مسلح دخالت نمی کنند.

• سازگاری بتن و فولاد

• بتن و فولاد سازگاری قابل توجهی برای تشکیل یک جسم مرکب دارند که در این میان می توان به موارد زیر اشاره کرد:

• الف- ضریب انبساط حرارتی بتن و فولاد بسیار به هم نزدیک است؛ به همین دلیل تحت تاثیر تغییرات دمای متداول، تنش های قابل توجهی بین آنها ایجاد نمی شود.

• ب- بتن و فولاد چسبندگی بسیار خوبی با یکدیگر داشته و بین آن دو معمولا لغزش اتفاق نمی افتد؛ بنابراین می توانند عملکرد مرکبی با یکدیگر داشته باشند و همانند یک جسم واحد عمل کنند. چسبندگی بسار خوب بین بتن و فولاد، ناشی از چسبندگی شیمیایی بین دو ماده، و نیز ناصافی های سطحی و برآمدگی های آج میلگرد می باشد.

• ج-فولاد ماده ای است که به راحتی در معرض خوردگی شیمیایی قرار می گیرد؛ در حالی که بتن معمولا نفوذ ناپذیری قابل قبولی دارد و می تواند فولاد مسلح کننده را در مقابل خوردگی محافظت نماید.

• د- مقاومت فولاد در مقابل دمای آتش بسیار پایین است؛ در حالی که پوشش بتن که روی میلگرد ها قرار گرفته است، مقاومت بسیار خوبی در مقابل

• اتش سوزی ایجاد می کند.

• پیشینه تاریخی بتن آرمه

• اگر چه گفته می شود سیمان از دیرباز توسط ایرانیان و رومانیان به عنوان یک ماده ساختمانی به کار گرفته می شده است، اما سابقا ثبت سیمان پرتلند به جوزف آسپیدین انگلیسی در سال 1824 بر می گردد. از آن پس بتن غیر مسلح برای سالها به عنوان یک مصالح ساختمانی خوب، تولید شد.

• سابقه استفاده از بتن مسلح به سال 1850 بر می گردد که جوزف لامبوت فرانسوی یک قایق بتنی را که با شبکه ای از سیم های موازی مسلح شده بود، تولید کرد. با این حال اختراع بتن آرمه معمولا به جوزف مونیر فرانسوی نسبت داده می شود. وی در سال 1867، ابداع ساخت حوضچه ها و مخازن بتنی مسلح به شبکه ای از سیم آهنی را برای خود ثبت نمود. از آن به بعد مونیر تا سال 1881،موارد متعددی از کاربرد بتن مسلح را از جمله در ساخت لوله ها و تانک ها، صفحات و دال های مسطح، پل های عابر پیاده، قوس ها، ساختمان ها و اجزاء رابط خطوط آهن به نام خود به ثبت رساند. با این وجود گفته می شود که وی دانش مربوط به رفتار بتن آرمه و یا روش مناسب جهت محاسبات طراحی را نداشته است.

• در آمریکا ویلیام وارد نخستین ساختمان بتن آرمه را در سال 1875 در نیویورک بنا نمود. همچنین تادیوس هیات که در ابتدا یک وکیل بود، در دهه 1850 تجربیاتی را در مورد تیر بتن آرمه انجام داد. وی میله های آهنی را در ناحیه کششی تیر قرار داد و در نزدیکی تکیه گاه آن را به طرف بالا خم کرده و در ناحیه فشاری محار نمود. او همچنین میله های قائمی را در نزدیکی تکیه گاه ها برای تحمل برش به کار برد. هیات در سال 1877 یک کتاب 28 صفحه ای در ارتباط با موضوع تحقیقات خود منتشر کرد.

• همچنین رانسام در دهه 1870 در شهر سانفرانسیسکو مواردی از استفاده از بتن آرمه تجربه نمود. وی در سال 1884، استفاده از میله های آجدار را با پیچاندن میله هایی با سطح مقطع مربعی و به منظور فراهم نمودن چسبندگی بهتر بین فولاد و بتن، به نام خود ثبت کرد. همچنین وی در سال 1890، ساختمان یک موزه دو طبقه به طول 95 متر را به صورت بتن آرمه بنا نمود. این ساختمان در زلزله سال 1906 سانفرانسیسکو و نیز در آتش سوزی متعاقب این زلزله، آسیب جزئی دید که این عملکرد و نیز عملکرد مناسب سایر ساختمان های بتن آرمه در آن زلزله و آتش سوزی متعاقب، منجر به اقبال عمومی به این سیستم جدید ساختمان سازی گردید.

• در سال 1903، تشکیل یک کمیته مشترک از نمایندگان سازمان های علاقه مند در زمینه بتن آرمه در آمریکا، نقطه شروعی برای همگانی کردن دانش طراحی بتن آرمهبود. از آن به بعد در دهه اول قرن بیستم، آزماشات متعددی توسط دانشمندان در آمریکا و اروپا جهت تعیین مقاومت فشاری بتن، و مدول الاستیسیته بتن انجام گرفت. از سال 1916 تا 1935، بیشتر تحقیقات بر ستون های بتن آرمه با بار خارج از محور، شالوده بتن آرمه و نیز مقاومت نهایی تیرها بیشتر مورد توجه محققین قرار گرفت.

• از آن به بعد و تاکنون تحقیقات بسیار زیادی در زمینه رفتار قطعات و سازه های بتن آرمه انجام گرفته است. هزاران رساله کارشناسی ارشد و دکترا در این زمینه در دهه های اخیر به رشته تحریر در آمده است. با این وجود به اعتقاد نگارنده، هنوز ناشناخته های فراوانی در زمینه رفتار اجزاء بتن آرمه وجود دارد. از همین رو در حال حاضر نیز بسیاری از تحقیقات زنده ی دانشگاه های معتبر و مراکز تحقیقاتی دنیا در زمینه اجزاء و قطعات بتن آرمه معطوف می کردد.

• مزایا و معایب بتن آرمه

• مصالح مختلفی مثل فولاد، چوب، مصالح بنایی و بتن ممکن است به عنوان گزینه هایی برای ساخت یک بنا مطرح باشند. این گزینه ها برای بسیاری از سازه های متداول وجود دارند؛ اگر چه در ساخت اسکلت سازه های بلند، ممکن است به فولاد و بتن محدود گردند. با این وجود امروزه بتن آرمه به عنوان یک گزینه قابل اعتماد برای ساخت بسیاری از سازه های کوچک و بزرگ محسوب می گردد؛ به طوری که شاید بتوان از آن به عنوان مهم ترین ماده ساختمانی موجود با کاربردی فراگیر در تمام دنیا نام برد.

• امروزه بسیاری از ساختمان های کوچک و بزرگ، پل ها، سد ها، تونل ها، کانال ها، مخازن و تانک ها، دیوارهای حائل، لوله ها و روسازی ها از بتن آرمه ساخته می شود. موفقیت قابل توجه بتن آرمه نسبت به سایر مصالح ساختمانی و به خصوص فولاد در کاربرد فراگیر آن را می توان مرهون موارد زیر دانست:

1-بتن مقاومت فشاری قابل قبولی در مقایسه با بسیاری از مصالح ساختمانی دیگر دارد.

2-تمامی اجزاء تشکیل دهنده بتن(به جز سیمان) به عنوان مصالح محلیو ارزان قیمت محسوب می شوند. تقریبا در همه جا می توان آب، ماسه و شن را از فواصل نزدیک به محل بتن ریزی حمل نمود که این مساله منجر به سهولت و رغبت بیشتر به بتن، و ارزانتر تمام شدن آن خواهد شد.

3-بتن را می توان به سهولت به هر شکل دلخواه در آورد. با ساختن قالب مناسب، تقریبا هر گونه مقطع سازه ای و شکل معماری را می توان از بتن آرمه تولید نمود. در مقابل، مقاطع فولادی در ابعاد مشخص و در کارخانه تولید می شوند و تولید مقطع خاص از مصالح فولادی گاه مشکل و یا غیر ممکن خواهد بود.

4-بتن مقاومت بسیار خوبی در مقابل آتش دارد.یک ساختمان بتن آرمه می تواند ساعت ها در مقابل آتش سوزی های مهیب مقاومت کند، بدون آنکه فرو ریزد. این مساله فرصت کافی برای مهار آتش و نیز تخلیه ساختمان از نفرات و اموال را فراهم میکند. در مقابل یک ساختمان فولادی در برابر آتش سوزی کاملا ضعیف خواهد بود. فروریزی برج های دوقلوی نیویورک که در واقعه 11 سپتامبر سال 2001 مورد حمله قرار گرفتند، به دلیل اسکلت فولادی آنها بود. چنانچه این برج ها از مصالح بتن آرمهساخته شده بودند، جان هزاران انسان و نیز میلیون ها دلار ثروت موجود در آنها حفظ می شد.

5-بتن همچنین مقاومت خوبی در مقابل رطوبت و آب دارد. اگر آب در تماس با بتن، حاوی بعضی از یون ها از قبیل یون سولفات و یا یون کلرور نباشد، برای بتن و حتی میلگرد های موجود در بتن، مشکلی ایجاد نمی کند ولی در غیر این صورت باعث تخریب می گردد که نیاز به ترمیم و همچنین مقاوم سازی دارد.

6-اجزاء بتن آرمه از صلبیت بالایی برخوردار هستند. به همین دلیل معمولا ساکنان یک ساختمان بتن آرمه در هنگام وزش شدید باد و یا تحرک زیاد همسایگان، لرزه ای را احساس نمی کنند و آرامش آنها حفظ می شود.

7-اجزاء بتنی در مقایسه با سازه فولادی به صورت ذاتی به محافظت و نگهداری کمتری نیاز دارند. به خصوص اگر بتن ریزی به صورت متراکم انجام گرفته باشد و در قسمت های در تماس با هوا از بتن هوادار استفاده شده باشد، پس از شروع بهره برداری از سازه ی بتن آرمه تقریبا نیاز به مراقبت جدی ندارد.

8-بتن در مقایسه با سایر مصالح ساختمانی، عمر بهره دهی بسیار طولانی دارد اما به شرایطی که در محیطی مطلوب جهت انجام عملیات بتن ریزی باشد قرار گیرد که در صورت نیازها از مواد آب بندی و افزودنی های بتن در صورت نیاز از ترمیم کننده های بتن مورد مصرف قرار گیرد باید در نظر داشت که تحت شرایط مشخص، یک سازه بتن آرمه می تواند برای همیشه بدون کاهش در ظرفیت باربری مورد استفاده قرار گیرد.این مساله مبتنی بر این واقعیت است که بتن در طول زمان نه تنها کاهش مقاومت ندارد، بلکه با گذشت طولانی زمان با تحکیم بیشتر سیمان، افزایش مقاومت نیز داشت. با این وجود، تاثیر عوامل مخرب محیطی و یون های مهاجم ممکن است دوام بتن را در طول زمان به مخاطره بیندازد.

9-بتن در بعضی از اجزاء سازه ای نظیر پی ها، دیواره های زیر زمین و شمع ها، به عنوان تنها گزینه اقتصادی محسوب می شود.

10-اجرای بتن و سازه ی بتن آرمه در مقایسه با سایر مصالح نظیر فولاد و یا حتی چوب، نیاز به نیروهای اجرایی و کارگران با مهارت بالا ندارد.

 

نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 

 



:: برچسب‌ها: بتن , کلینیک بتن ایران ,
:: بازدید از این مطلب : 240
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : یک شنبه 6 خرداد 1397 | نظرات ()
نوشته شده توسط : کلینیک بتن ایران

در هر واحد صنعتی بر حسب میزان مصرف آب و برای تامین مصرف پیک مقدار ذخیره آب اهمیت دارد.که باتوجه به اهمیت بالای آن باید برای آب بندی این نوع مخازناقدام نمود.

مخازن ذخیره آب: (Water reservoirs)

در هر واحد صنعتی بر حسب میزان مصرف آب و برای تامین مصرف پیک مقدار ذخیره آب اهمیت دارد.که باتوجه به اهمیت بالای آن باید برای آب بندی مخازن اقدام نمود. مثلا در صنایع رنگرزی مصرف آب زیاد می باشد, همچنین احتمال خراب شدن پمپ چاه و یا قطع آب شهر و نظایر آن فاکتوری در تعیین میزان ذخیره آب است. بنابراین مقدار ذخیره آب تعیین کننده نوع مخزن ذخیره می باشد و نیز مقایسه اقتصادی خود فاکتوری در انتخاب نوع مخزن است. مثلا برج آب را برای هر نوع ظرفیتی می توان ساخت ولی اگر یک مقدار بالاتر ساخت آن اقتصادی نمی باشد و مخازن بتنی زمینی ارزانتر تمام می شود, در نتیجه همیشه باید پس از تعیین ظرفیت ذخیره لازم و بررسی مواد فنی یک مقایسه اقتصادی بین انواع مخازن ذخیره بعمل آید تا نوع مناسب از جهت فنی و اقتصادی مشخص شود. انواع مخازن ذخیره عبارتند از:

1- برج آب

2- مخازن زمینی

1- برج آب (ثقلی) (Elevated tank)

برج آب می تواند علاوه بر ذخیره آب یک فشار استاتیک در شبکه ایجاد نماید. حسن برج آب در این است که اگر برق قطع شود تا ساعاتی می تواند آب مصرفی سرویس ها را تا مین نماید،اما باتوجه به این نظر که در صورت آببند نبودن این سازه دچار مشکل های استاتیکی و همچنین مشکلات تأسیساتی خواهد شد.

ارتفاع برج اگر فقط برای مصارف خانگی و بهداشتی باشد می تواند بین 15 تا 20 متر باشد که با توجه به افت فشار شبکه , فشار پشت مصرف کننده های بهداشتی را تامین نماید. ولی اگر برای مصارف صنعتی هم باشد باید ارتفاع برج را بین 25 تا 30 متر در نظر گرفت.

ارتفاع برج از کمر تانک تا کف فونداسیون آن می باشد.

ولی به هر حال فشار لازم در شبکه و افت فشار شبکه تعیین کننده ارتفاع برج می باشد که باید مورد محاسبه قرار گیرند.

البته باید سعی نمود که برج آب را در نقطه ای از زمین که بلندتر از سایر نقاط است نصب کرد تا ارتفاع خود برج را بتوان کمتر در نظر گرفت و ارزانتر تمام شود.

سطح آب در برج در دو نقطه کنترل می گردد یکی حد بالای سطح آب و دیگری حد پایینی سطح آب که این دو سطح توسط یک شناور الکتریکی(Float switch) کنترل می گردد یعنی هر گاه سطح آب به کمتر از حد پایینی برسد پمپ تغذیه برج از شناور برقی فرمان استارت می گیرد و هرگاه سطح آب در برج به حد بالایی رسید شناور برقی به پمپ فرمان قطع می دهد.

برج آب دارای دو لوله می باشد که از سطح زمین و از محور عمودی برج وارد تانک می شود که یکی هم لوله پر کننده و هم لوله مصرف می باشد و دیگری سرریز برج است که در صورتی که شناور الکتریکی کار نکند آب اضافه به حد بالای سطح آب از طریق آن خارج شده و در صورت وجود مخازن زمینی به آنها می ریزد و در صورت نبودن مخازن زمینی به نقطه ای ریخته می شود که اپراتور با ملاحظه آن مطلع می شود که شناور الکتریکی کار نمی کند و نسبت به تعمیر آن اقدام می نماید.

در گذشته برای برج آب سه لوله در نظر میگرفتند که یکی برای پرکننده و دیگری برای مصرف و سومی برای سرریز بوده است که عملا وجود دو لوله جداگانه برای پر کردن و مصرف کردن آب ضرورتی نداشته و کار بیهوده ای است.

با توجه به شکل ها و مقایسه آنها این مطلب روشن می شود.

هرگاه مصرف شروع شود آب از برج به شبکه می رود و هرگاه ذخیره برج کاهش یابد و به حد پایینی برسد شناور الکتریکی به پمپ فرمان استارت می دهد و تا زمانی که مصرف زیاد باشد آب بطور مرتب توسط پمپ به برج می ریزد و از برج به شبکه میرود تا وقتی که مصرف به حدی کاهش یابد که پمپ شروع به پر کردن برج نماید تا آب به حد بالایی برسد, شناور الکتریکی فرمان قطع به پمپ می دهد و سیکل کار دوباره تکرار می گردد.

هرگاه مصرف شروع شود آب از برج به شبکه می رود و هر گاه ذخیره برج کاهش یافته و به حد پایینی رسید شناور الکتریکی به پمپ فرمان استارت می دهد و شبکه مستقیما توسط پمپ تغذیه می گردد بدون آنکه آب وارد برج شود ( چون مقاومت ارتفاع برج بیش از مقاومت شبکه می شود زیرا مصرف کننده ها باز هستند ) و وقتی مصرف به حدی کاهش یابد که پمپ شروع به پر کردن برج نماید تا آب به سطح بالایی برسد, شناور الکتریکی فرمان قطع به پمپ می دهد و سیکل کار دوباره تکرار می گردد.

نتیجه اینکه در حال اول وقتی پمپ کار می کند آب از طریق برج به شبکه می رود بدون آن که برج پر شود و در حالت دوم آب مستقیما از طریق لوله به شبکه می رود و لزومی ندارد که به برج برود, بنابراین وجود دو لوله جداگانه برای پرکردن و خالی کردن برج هیچ ضرورتی ندارد .

2- مخازن زمینی (Reservoir Tank)

مخازن زمینی به دو منظور ساخته می شوند. یکی برای ذخیره آب برای مصارف صنعتی بخصوص برای ساعات پیک و دیگری برای آتش نشای .بطور کلی برای آتش نشانی فقط مخازن زمینی مناسب هستند زیرا برج آب به ظرفیت بسیار زیاد که بتواند جوابگوی مصرف آتش نشانی باشد بسیار گران و غیر اقتصادی میباشد.

همچنین در صنایعی که مصرف آب آنها زیاد است و دارای چاه نامناسب یا انشعاب هستند مخزن زمینی ضروریست.

مخازن زمینی برای ظرفیت های کم مانند آب نرم می تواند فلزی باشد ( تانک های ایستاده فلزی ) ولی برای ظرفیت های زیاد باید از بتن مسلح ساخته شوند. یک مخزن بتنی حتما باید حداقل دارای دو قسمت باشد تا در مواقع اضطراری و یا تمیز کردن کف یکی از آنها بتوان از دیگری استفاده کرد تا در کار تولید خللی وارد نشود . در این مخازن لوله های زیر آب و لوله های مکش پمپ ها باید در نظر گرفته شود, در زیر انواع مخازن بتونی و روش کار با آنها شرح داده شده است:

مخزن بتونی دو خانه زمینی(مخزن بتنی زمینی)

- لوله های مکش پمپ ها باید حداقل in 6 باشند.

- لوله های زیر آب حدود in 4 باشند.

- لوله پر کن بر حسب ظرفیت پمپ چاه یا شناور بین in 2 تا in 4 می باشند.

در هر یک از لوله های مکش پمپ ها از مخازن یک عدد شیر قطع و وصل نصب می گردد ( شیر دروازه ای ) که در حالت عادی هر دو شیر باز هستند و در صورت لزوم هر یک از مخازن را می توان با شیر از مدار خارج کرد.

لوله های تخلیه در گوشه هر مخزن بطوری که هر دو لوله تخلیه در یک نقطه جنب یکدیگر باشند نصب می شود زیرا هر سیستمی که برای خروج آب تخلیه شده در نظر گرفته شود در این حالت ساده تر و کم خرج تر است , طول لوله تخلیه هرگز نباید بیش از یک متر باشد تا در صورت گرفتگی به سادگی باز شوند .

لوله های پر کن که یا از پمپ چاه آب و یا از انشعاب آب شهری به مخازن می آیند باید به بالای هر مخزن به طور جداگانه هدایت شوند تا در صورت نیاز هر یک را بتوان از مدار خارج کرد. روی این مخازن بهتر است با سقف های سبک پوشانده شود تا علاوه بر جلوگیری از ورود برگ و آشغال و گرد و خاک به آن از تابش نور به آب نیز جلوگیری گردد , زیرا تابش نور سبب ایجاد خزه در جداره ها و کف مخازن می گردد که دردسر زیادی تولید می کنند (مثل کرم گذاشتن و کثیف کردن آب و گرفتگی صافی پمپ ها و نظایر آن ها ), البته با کلر زنی و یا استفاده از خزه کش هایی مثل سولفات مس و گاز ازن و نظایر آن می توان از ایجاد خزه جلوگیری کرد . ولی این مواد برای بعضی از پروسس های تولیدی مضر هستند , مثل رنگرزی که وجود این مواد خاصیت رنگ بری دارند و سبب می شوند که مصرف رنگ زیاد شود. همچنین تمام این مواد برای دیگ های بخار مصرف هستند و تشکیل اسید های خورنده می دهند.

بنابراین از هیچ نوع ماده شیمیایی نمی توان برای از بین بردن یا جلوگیری از ایجاد خزه در آب استفاده کرد و سیستم های دیگر نیز پر هزینه هستند.

محل اتاق پمپ خانه که بهتر است چسبیده به مخزن باشد می تواند در هر یک از نقاط مناسب اطراف مخزن قرار بگیرد که البته باید محل لوله های زیر آب و لوله های پر کن در نقطه ای قرار گیرند که در اتاق پمپ نباشند.

مخازن بتونی می توانند بیش از دو خانه باشند ولی ابعاد هر خانه نباید کمتر از 6 متر در 6 متر باشد ,زیرا اقتصادی نیست و لزومی هم ندارد که ابعاد هر مخزن کمتر از این مقدار باشد .

ارتفاع مخزن بتنی روی زمین می تواند حدود 5/2 متر باشد که برای آب بندی راحت مخزن و ایستایی آن حداکثر نیم متر آن می تواند در زیر قرار بگیرد و بقیه آن باید بالای زمین باشد زیرا به پمپ های آب سوار هستند و پمپ ها که در ارتفاع مکش محدودی می توانند کار کنند می توانند در راندمان ماکزیمم بدون ایجاد مشکلی کار کنند . همچنین لوله های تخلیه در این عمق به هر کانالی که آب تخلیه شده را به خارج هدایت کند سوار هستند . در محل تخلیه هر مخزن باید یک چاهک به ابعاد 40سانتیمتر در 40سانتیمتر و عمق 10 سانتیمتر در نظر گرفت تا عمل شستشو و تخلیه مخزنها راحت باشد . کف کانال آبرو تخلیه زیر آب , باید 10 سانتیمتر زیر لوله تخلیه باشد (برای باز و بسته کردن شیر از لوله و ....) . زیر لوله های مکش پمپ نیز باید 10 سانتیمتر بالا تر از کف مخزن باشند تا احتمالا مواد ته نشین شده وارد لوله های مکش نشوند .

لوله های پرکن از دیواره وارد مخزن می شوند و در حد فاصل سقف و دیوار قرار می گیرند.

همیشه محل لوله های پر کن و لوله های زیر آب باید در یک نقطه باشد تا دریچه بازدید که در روی سقف در این نقاط پیش بینی می شود برای مواقع ضروری هم مشرف به لوله های زیر آب و هم به لوله های پر کن باشند.

لوله مکش آب باید در سمت داخل مخزن از دیوار تمام شده 20 سانتیمتر بیرون باشد و در سمت بیرون مخزن باید 50 سانتیمتر بیرون باشد و هر دو سر لوله دنده شوند تا در صورت لزوم بتوان اتصالاتی را به آن متصل نمود , جنس لوله بهتر است گالوانیزه باشد و طول لوله زیر آب در سمت داخل مخزن باندازه ای باشد که سر آن هم سطح دیوار مخزن گردد و در سمت بیرون مخزن 50 سانتیمتر از دیوار مخزن بیرون باشد , جنس این لوله هم بهتر است گالوانیزه باشد و سر لوله در سمت بیرون مخزن دنده شود , بنابراین با توجه به توضیحات فوق دارای لوله برای هر یک قابل محاسبه می باشد.

مخازن بتنی داخل زمینی

این نوع مخازن چندان مناسب نیستند زیرا اولا به پمپ های زمینی سوار نیستند و یا باید پمپ خانه نیز در زیرزمین باشد که در نتیجه دسترسی به پمپ ها و سایر وسایل برای تعمیر و حمل و نقل مشکل است و یا باید در آنها از پمپ شناور که به صورت افقی در کف مخزن نصب می گردد استفاده نمود که دسترسی به این پمپ ها نیز مشکل است و در صورت خراب شدن مدتی کار تولید مختل می گردد و اگر دو پمپ شناور نصب کنیم ( یکی رزرو ) هزینه اولیه تاسیسات بالا میرود.

تخلیه این مخازن را با ثقل نمی توان انجام داد و باید از پمپ کف کش سیار استفاده نمود که این پمپ ها نیز گران می باشند . بطور کلی این سیستم دردسر فراوانی داشته و شستشوی مخزن نیز زحمت زیادی دارد و چون فقط یک مخزن است لذا شستشوی آن فقط در ایام تعطیلات سالیانه کارخانه مقدور خواهد بود ( اگر دو مخزن ساخته شود ناچارا باید در هر یک پمپ شناور جداگانه نصب نمود).

روی این مخازن نیز باید با سقف سبک پوشانده شود.

ظرفیت مخازن زمینی برابر است با مجموع ظرفیت های صنعتی و بهداشتی و مصرف آتش نشانی.

تانک تحت فشار (Pressure tank)

در هر سیستم آبرسانی حداقل در یک نقطه از آن برای انتقال آب و تامین فشار لازم در شبکه از پمپ استفاده می شود, این پمپ یا در چاه و یا در جلوی مخازن زمینی ذخیره آب نصب می گردد. پمپها نباید بطور دایم کار کنند چون اگر مصرف در شبکه کم باشد یا اصولا مصرف نباشد پمپ های سانتریفوژ آب را در خود به گردش در می آورند و پروانه بطور آزاد در محفظه پمپ درون آب گردش می کند, البته پمپ های سانتریفوژ(Contrifugal pump) تفاوت عمده با پمپ های دنده ای (Cearing pump)دارند. به این صورت که اگر شیر خروج سیال از پمپ دنده ای بسته شود چون سیال راه خروج ندارد و به دندانه های چرخ دنده پمپ فشار می آورد دنده های پمپ را می شکند ولی در پمپ های سانتریفوژ اگر شیر خروجی بسته شود پروانه پمپ, سیال را از پشت خود گرفته و از داخل خود خارج می کند و لذا پروانه بطور آزاد در داخل سیال گردش می کند.

بنابراین گردش پروانه در آب دو نکته بوجود می آورد یکی اینکه انرژی الکتریکی بدون آنکه کاری انجام شود مصرف می گردد و دوم اینکه گردش زیاد پروانه در آب سبب تبخیر آب در سطح پروانه و ایجاد پدیده کاویتاسیون(Cavitation) می گردد چون تبخیر آب در سطح پروانه ایجاد یک خلا روی فلز پروانه می کند و این خلا در مرور زمان از سطح فلز جرم برداری می کند و حفره هایی در سطح پروانه ایجاد می شود که بعد از مدتی پروانه خراب شده و پمپ از کار می افتد.

همچنین شبکه تحت یک فشار دینامیکی قرار می گیرد که سبب استهلاک شیرآلات و اتصالات دنده ای شده می شود. در نتیجه با استفاده از برج آب یا تانک تحت فشار که موازی با پمپ نصب می گردند توسط سیستم کنترل سطح آب در مواقعی که مصرف کم یا قطع می شود به پمپ فرمان قطع می دهد و شبکه در شروع مصرف از ذخیره آب در برج و به نوعی در تانک تحت فشار استفاده می کند تا وقتی مصرف زیاد شد و آب ذخیره جوابگو نبود سطح آب در برج یا تانک تحت فشار کاهش یافته و پمپ فرمان روشن می گردد.

تانک تحت فشار روی زمین نصب می شود و نسبت به برج آب بسیارارزانتر در می آید و دسترسی به آن بسیار راحت تر از برج آب می باشد و مشکلات نگهداری برج آب را ندارد, تامیت فشار توسط هوای فشرده می باشد که در بالای تانک قرار می گیرد و با فشار خود آب را تحت فشار قرار می دهد, این فشار باید برابر فشار پمپ (Head) باشد تا شبکه تحت فشار نسبتا ثابتی قرار گیرد و متعادل (Balance) باشد از طرفی چون هوا به مرور زمان در آب حل می شود لذا فشار هوای محبوس بالای تانک, کاهش می یابد و سطح آب به دلیل غلبه فشار پمپ به فشار هوا بالا می آید تا هوا متراکم شده و فشار آن برابر فشار پمپ شود به همین علت سعی می شود که تانک های تحت فشار دارای قطر کم و ارتفاع زیاد باشند تا سطح تماس آب با هوا کمتر باشد ( البته از نظر مقاومت مصالح نیز موضوع مهم است ) باید توجه داشت که هر چه فشار بیشتر باشد حلالیت هوا در آب بیشتر می شود. البته چون بیشتر مواقع تانک های تحت فشار را در محل های مسقف نصب می کنند گاه به دلیل محدودیت ارتفاع مسقف اتاق ,ناچار می شوند از مخازن تحت فشار افقی استفاده کنند که سطح تماس آب و هوا بسیار زیاد می شود. کنترل سطح آب تثبیت فشار هئا در تانک های تحت فشار به دو روش صورت می گیرد:

1- تنظیم دستی سطح هوا و فرمان به پمپ یا پرشرسویچ :

در شروع بهره برداری سطح آب را در نقطه ای در حدود 3/1 ارتفاع تانک از بالای آن انتخاب می کنیم و روی شیشه آب نما علامت می زنیم, سپس پمپ را روشن می کنیم تا سطح آب در تانک به علامت برسد, سپس پمپ را خاموش کرده و شیر هوای فشرده را باز می کنیم تا آنقدر هوا وارد شود تا فشار سنج به فشار مورد نظر برسد سپس شیر هوا را می بندیم , سیستم در این حالت می تواند کار کند و هر گاه فشار به حد بالا رسید پرشرسویچ پمپ را قطع می کند و هرگاه فشار کاهش یافت و به حد پایین رسید پمپ شروع به کار می کند. باید توجه کرد که روی پرشرسویچ دو محل تنظیم وجود دارد که یکی برای تنظیم فشار حد اکثر و یکی برای تنظیم اختلاف فشار مورد نظر است, که در نتیجه فشار ماکزیمم و منیموم را می توان داشت. اختلاف بین فشار حداکثر و فشار حداقل ( اختلاف فشار ) باید به اندازه ای باشد که پمپ با توجه به مصرف در هر ساعت حداکثر 6 بار استارت کند ( برای محافظت الکتروموتور ) که معمولا اختلاف یک اتمسفر این نتیجه را بدست می دهد, بنابراین سطح پایین آب در تانک در حالت فشار حداقل باید مورد توجه قرار گیرد و اگر تانک از آب خالی شد و تمام حجم تانک را هوا گرفت باید سطح آب را در فشار حداکثر به بالاتر برد تا هنگامی که سطح پایینی آب در فشار حداقل در آب نما مشاهده گردد ( روش آزمون و خطا ) و علامتی که برای فشار حداکثر روی آب نما بدست می آید باید به گونه ای ثابت شود که همیشه باقی بماند, معمولا در هر فاصله زمانی مناسب سطح آب باید نسبت به علامت بازبینی گردد تا در صورت بالا رفتن سطح آب نسبت به علامت ( بدلیل حل شدن هوا در آب ) با باز کردن شیر تخلیه مقداری آب را تخلیه نمود تا سطح آن به علامت برسد و سپس با بستن شیر تخلیه و باز کردن شیر هوا آنقدر هوا وارد تانک کرد تا فشار روی فشار سنج به حداکثر مقدار قبلی برسد . در عمل, این فاصله زمانی حدود دو ماه می باشد.

2- تنظیم اتوماتیک سطح هوا و فرمان به پمپ توسط رله کنترل سطح مایعات:

در این حالت سطح بالا و یا پایین آب توسط محاسبه بدست می آید و این سطوح توسط الکترود بالا و الکترود پایین کنترل می شوند و فشار هوای بالای آب همواره توسط پرشر سویچ و شیر مغناطیسی روی لوله هوا ثابت نگهداشته می شود ( چون هوا در آب حل می شود و فشار آن کاهش می یابد ).

اساس کار سیستم کنترل سطح آب بر اندازه گیری مقاومت بین دو الکترود توسط پتانسیو متر می باشد یعنی اگر الکترود بالا در آب باشد مقاومت بین آن دو تفاوت می کند و فرمانی صادر نمی شود, وقتی الکترود پایینی نیز در هوا قرار گرفت مقاومت حاصل بین دو الکترود, فرمان استارت به پمپ می دهد و سیکل کار تکرار می گردد, برایاندازه گیری مقاومت توسط پتانسیومتر نیاز به یک الکترود واسطه (Reference) می باشد که همیشه در آب قرار دارد که در پایین ترین نقطه تانک و مقداری پایین تر از الکترود پایین نصب می شود ( البته این الکترود لازم نیست حتما در آب باشد و می توان را به جدار خرجی تانک نیز نصب نمود )

محاسبه ظرفیت تانک تحت فشار و سطوح آب
مفهوم علایمی که در روابط محاسباتی به کار رفته عبارتند از:

ماکزیمم مصرف بر حسب متر مکعب بر ساعت QM

تعداد استارت پمپ در ساعت (4 الی 6 بار) N

حداقل ارتفاع آب در تانک ( معمولا 0.1 متر ) R

حداقل فشار داخل تانک برحسب bar PL

حداکثر فشار داخل تانک برحسب bar PH

حجم کل تانک بر حسب متر مکعب Vt

حجم حداکثر آب در تانک بر حسب متر مکعب VW

سطح مقطع تانک بر حسب متر مربع S

زمان ذخیره (نسبتی از یک ساعت , معمولا یک ربع ) a

ارتفاع حجم VW بر حسبm HW

ارتفاع حجم حداقل سطح آب بر حسب m HR

حجم حداکثر آب ( VW ) :

)/N (a VW =

مقدار VW نسبتی از Vt ( حجم تانک ) می باشد که داریم:

= CVtVW

در نتیجه حجم کل تانک برابر است با:

C Vt = VW/

که مقدار ضریب C از رابطه زیر بدست می آید :

C = ( 1- R ) (1- PL/PH)

اگر حجم تانک بیش از 5000 لیتر شود باید از دو عدد تانک که با یکدیگر بطور موازی در مدار قرار گیرند و مجموع حجم آنها برابر Vt می شوند استفاده کرد یعنی حجم هر تانک برابر Vt/2 می شود.

ارتفاع الکترود بالایی از کف تانک یا


نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 

 



:: برچسب‌ها: کلینیک بتن ایران ,
:: بازدید از این مطلب : 253
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : یک شنبه 6 خرداد 1397 | نظرات ()
نوشته شده توسط : کلینیک بتن ایران

بارهایی که روی ساختمان وارد می شوند یا مستقیمآ به وسیله طبیعت و یا به وسیله انسان ایجاد می گردند. به عبارت دیگر برای بار روی ساختمانها دو منبع اصلی وجود دارد، یکی ژئوفیزیکی و دیگری مصنوعی.

نیروهای ژئوفیزیکی را که نتیجه تغییرات مداوم در طبیعت هستند ممکن است به نیروهای جاذبه زمین، وزن ساختمان خودش ایجاد نیروهایی در سازه می کند که موسوم به بار مرده است واین بار در تمام طول عمر ساختمان ثابت باقی می ماند. اشکال همیشه در حال تغییر ساختمان نیز تایع اثرات جاذبه زمین است که ایجادتغییراتی در بارها در طول زمان می کند. بارهای ناشی از تغییرات جوی با زمان و مکان تغییر می کنند و به شکل باد، حرارت، رطوبت، باران، برف، و یخ ظاهر می شوند. نیروهای زلزله از حرکت نا منظم زمین یعنی زمین لرزه ایجاد میشوند.

منابع بارگذاری مصنوعی ممکن است تکان ناشی از حرکت اتومبیل ها، آسانسورها، ماشینهای مکانیکی و غیره و یا ممکن است تغییر مکان افراد، وسایل و یا نتیجه ضربه و انفجار باشند. به علاوه ممکن است نیروهایی در زمان تولید و اجرا در سازه به وجود آید. پایداری ساختمان ممکن است ایجاد پیش تنیدگی کند که باعث ایجاد نیرو در ساختمان می شود.

منابع بارهای ژئوفیزیکی و مصنوعی در ساختمان غالبآ به یکدیگر بستگی دارند. جرم، اندازه، شکل و مصالح یک ساختمان در روی نیروهای ژئوفیزیکی اثر می گذارند. برای مثال اگر عناصر ساختمان در مقابل تغییرات درجه حرارت و رطوبت نتوانند به آزادی واکنش نشان دهند و گیردار باشند نیروهایی در ساختمان ایجاد می شود.

برای اینکه اطمینان حاصل شود که مشکلات آتی از بین رفته و بازده سازه ای حاصل شده باشد لازم است که مطالعات دقیق جواب تئوری ساختمان به اثرها انجام گیرد. طراح باید نیروها و اثر بارگذاری مربوطه را درک کند تا ساختمان بی خطر و قابل استفاده باشد.

• بار زنده ساختمان

بارهای ناشی از نیروی جاذبه زمین را میتوان به دو دسته مجزا تقسیم کرد:

استاتیکی و دینامیکی: بارهای استاتیکی همیشه جزء ثابتی از سازه هستند. بارهای دینامیکی موقتی هستند یعنی با تغییر زمان و فصل تغییر می کنند، یا تابع مکان داخل یا روی سازه هستند.

بارهای مرده را ممکن است به صورت بارهای استاتیکی که در اثر وزن اجزاء سازه ایجاد می شوند تعریف کرد.نیروهایی که منجر به بار مرده می شوند عبارتند از: قسمتهای باربر ساختمان،کف،روکاری سقف، دیوارهای جدا کننده ثابت، پوشش نما، مخزنهای انباری، سیستمهای توزیع مکانیکی و غیره. مجموع وزنهای همه این قسمت ها بار مرده ساختمان را تشکیل می دهد.

به نظر می رسد که تعیین وزن مصالح و از آنجا بار مرده ساختمان کار ساده ای باشد. اما به دلیل مشکلات گوناگون در تجزیه و تحلیل دقیق بارها تخمین بارها ممکن است 15 تا 20 درصد و یا حتی بیشتر در خطا باشد.

در مرحله اولیه طرح برای مهندس محاسب پیش بینی دقیق وزن مصالح ساختمانی که هنوز انتخاب نشده اند کاری غیر ممکن است. مصالح ناسازه ای مشخصی که باید انتخاب شوند شامل صفحات پیش ساخته نما، لوازم روشنایی، قطعات سقف، لوله ها، مجرا ها، خطوط برق و اجزای نیازمندیهای داخلی خاص ساختمان می باشند.

وزن عناصر تقویت کننده و اتصالات در سازه های فولادی فقط به صورت درصدی از وزن کل تخمین زده می شود. وزن واحد حجم مصالح که به وسیله تولید کنندگان یا آئین نامه ها داده می شود همیشه با وزن واحد حجم محصول تولید شده مطابقت ندارد. اندازهای اسمی اجزاء ساختمان ممکن است با اندازه های واقعی اختلاف داشته باشد .

• بار زنده ساختمان

فرق اساسی بارهای زنده با بارهای مرده در این است که بارهای زنده متغیر و غیر قابل پیش بینی هستند. تغییر در بارهای زنده نه تنها در طول زمان اتفاق می افتد بلکه همچنین تابعی از مکان می باشد. این تغییر ممکن است در مدت زمان کوتاه یا طولانی صورت گیرد. بدین ترتیب تقریبآ غیر ممکن است که بارهای زنده را به صورتاستاتیکی تخمین زد. بارهایی که بوسیله اشیاء یا اشخاص در ساختمان ایجاد می شوند به نام بارهای سکنی موسوم هستند. این بارها شامل وزن اشخاص، مبل ها، جدا کننده های متحرک، گاو صندوق ها، کتابها و دیگر بارهای نیمه دائم و موقتی که روی ساختمان اثر می کنند ولی جزئی از سازه نیستند و جزء بار مرده به حساب نمی آیند .

بارهای متمرکز، نشان دهنده اثر بار منفرد ممکن در نقاط بحرانی مثل کفهای پله، سقفهای قابل دسترس، گاراژهای توقف و دیگر نقاط آسیب پذیر با تنشهای متمرکز زیاد می باشند.

• بار اجرایی ساختمان

اجزاء سازه به طور کلی برای بارهای مرده و زنده طرح می شوند. اما یک قطعه سازه ممکن است در موقع اجرای ساختمان تحت بارهایی خیلی بیشتر از بارهای طرح قرار بگیرد. اینگونه بارها که موسوم به بارهای اجرائی هستند قسمت مهمی را در طرح اجراء سازه تشکیل می دهند.

هر پیمانکاری در طول زمان روش اجرایی را توسعه می دهد که برای خودش اقتصادی بودنش ثابت شده است. هر چند که معمار ممکن است ساختمان را طوری طرح کند که برای یک روش اجرایی معینی مناسب باشد، او ممکن است که از روشهای اجرایی یکایک پیمانکاران آگاهی نداشته باشد. پیمانکاران معمولآ مصالح و وسائل سنگین را روی سطح کوچکی ازسازه انباشته می کنند. این عمل ایجاد بارهای متمرکزی میکند که خیلی بیشتر از بارهای زنده فرض شده برای سازه طرح شده می باشد .در چنین شرایطی شکست نتیجه شده است .

یک مشکل اساسی در اجرای سازه های بتنی وقتی ایجاد می شود که پیمانکار پایه های تقویتی و قالب بندی را قبل از انقضای مدت کافی برای عمل آمدن بتن بردارد. مقاومت بتن با زمان زیاد میشود. ولی از آنجایی که برای پیمانکار زمان پول است او ممکن است قالب ها را قبل از اینکه بتون به مقاومت حداقل طرح برسد بردارد. در چنین صورتی جزئی از سازه ممکن است تحت اثر بارهائی قرار بگیرد که قادر به تحمل آنها نباشد و شکست حاصل شود.

• بارهای برف ، باران و یخ

مشاهده ارتفاع و تراکم برف در طول سالیان دراز منجر به پیش بینی معقول حداکثر بار برف شده است. بار برف را لازم است فقط برای بامها و سطوح دیگر ساختمان که ممکن است برف جمع کننده از قبیل حیاط های بالا آورده شده، بالکن ها و سقف های آفتابگیر در نظر گرفت. بار برف که به وسیله آئین نامه ها تعیین شده است بر اساس حداکثر برف روی زمین می باشد. غالبآ این بارها بیشتر از بار برفی که روی بام اثر میکند می باشد. زیرا باد مقداری از برف های شل را از روی بام به دور می ریزد یا بدلیل از دست رفتن گرما از طریق بام، برف آب و بخار می شود. آئین نامه ها معمولآ در صدی از بار برف را روی بام شیب دار کم می کنند، زیرا روی چنین سطوحی برف به سهولت از روی بام به پائین می لغزد. ولی بعضی از انواع بام ها ممکن است روی رفتار باد اثر بگذارند و باعث شوند که بار برف به مقدار زیاد در یک قسمت از بام ذخیره شود.با وجود اینکه اغلب در محاسبه بار زنده به آب فکر نمی شود حتمآ باید در موقع طرح آنرا به خاطر داشت. بار باران به طور کلی کمتر از بار برف است، ولی باید به خاطر داشت که ذخیره شدن آب منجر به مقدار قابل ملاحظه ای بار می شود.

همچون که آب جمع می شود بام تغییر شکل داده خم می شود و این باعث می شود که آب بیشتری جمع شود و منجر به تغییر شکل زیاد تری گردد. این پدیده که موسوم به حوض شدن می باشد ممکن است باعث فرو ریختن نهایی بام شود.

یخ روی اجزاء بیرون آمده به خصوص روی قطعات تزئینی خارجی که در غیر این صورت جز بار وزنشان باری دریافت نمی کنند جمع می شود. از این رو لازم است که این قطعات چنان طرح و اتصال داده شوند که بارهای سنگین قندیل های یخ را تحمل کنند. به علاوه، تشکیل یخ روی سازه های خرپایی باز باعث ازدیاد سطح و وزن شده که منجر به اضافه شدن باد می شود.

• بار باد روی ساختمان

آسمان خراشهای اولیه به اثرات پیچیده نیروی جانبی ایجاد شده بوسیله باد آسیب پذیر نبودند.وزن عظیم ساختمان با دیوارهای باربر ساخته شده از مصالح بنایی چنان بود که نیروی باد قادر نبود به نیروهای جاذبه به زمین غلبه کند. حتی موقعی که روش دیوار حمال بوسیله سازه قاب صلب در اواخر قرن 19 جایگزین شد، نیروی جاذبه عامل تعیین کننده اصلی بود.

نماهای سنگی سنگین با بازشدگی های کوچک، ستونهای نزدیک به هم، قطعات سرهم شده حجیم قابها، و دیوارهای جداکننده سنگین هنوز چنان وزنی را ایجاد می کردند که عمل باد یک مشکل اساسی نبود.

آسمان خراشهای دیوار شیشه ای سالهای 1950 با فضای باز داخلی مطلوب و وزن نسبتا کم برای اولین بار در مقابل نیروهای باد واکنش نشان دادند.با معرفی قاب فولادی سبک وزن، دیگر وزن یک عامل محدود کننده ارتفاع آسمان خراشها نبود. ولی عصر ساختمانهای بلند با خود مشکلات جدیدی آورده است برای اینکه وزن مرده کاهش داده شود و فضاهای بزرگتر و انعطاف پذیر ایجاد گردد تیرهای با دهنه زیاد، جدا کننده های داخلی بار نبر متحرک و دیوارهای پیرامونی بارنبر ساخته شده است.همه این ابداعات از صلبیت کلی سازه ها کم کرده اند، به طوری که حالا سختی جانبی (با تغییر مکان جانبی) یک ساختمان ممکن است تعیین کننده تر از مقاومتش باشد. اثر باد یک مسئله اساسی برای طرح ساختمانهای بلند شده است . درک باد و پیش بینی رفتارش به صورت علمی دقیق ممکن است غیر ممکن باشد. عمل باد روی ساختمان، شکل، باریکی و ترکیب نمای سازه مورد نظر و نحوه قرار گرفتن ساختمانهای مجاور دارد.

• بار ناشی از تغییرات حجم مصالح

تغییرات حجم مصالح در اثر انقباض،غرش و آثار حرارتی به وجود می آید. موقعی که از واکنش طبیعی و آزاد اعضاء ساختمان در سر حد ها یشان جلوگیری می شود در آنها نیرو ایجاد میگردد. در جایی که این تغییرات حجم محدود می شود نقش های محوری و دورانی در ساختمان ایجاد گردد.

تغییر حجم تابعی از شکل و اندازه ساختمان، مصالح، سختی اعضاء سازه ای و نوع اتصالات می باشد. با به کار بردن مانع در نقاطی از ساختمان که تنش های محوری و دورانی ممکن است ایجاد شود می توان تغییرات حجم را کنترل کرد و این به معنی طرح اعضاء برای تحمل این نقش ها می باشد. واضح است که تغییرات حجم را با استفاده از درزهای انبساط که در آنها حرکت به آزادی صورت می گیرد می توان کنترل نمود.

• بار ناشی از انفجار

ساختمان ممکن است مجبور باشد نه تنها نیرو های فشاری خارجی بلکه نیروهای فشاری داخلی ایجاد شده در اثر انفجار را نیز تحمل کند. فرو ریختن قسمتی از یک ساختمان آپارتمانی در لندن در سال 1968 توجه زیادی را به این بار گذاری جلب نمود. اکثر ساختمانها هرگز با چنین نیروهایی مواجه نخواهند شد،ولی احتمال انجار مواد منفجره در اثر خرابکاری یا اشتعالتصادفی گازهای آتش گیر در اثر نشت یا آتش همیشه وجود دارد.

در اثر انفجارات فشارهای زیادی در منطقه انفجار ایجاد می گردد و بارهای خیلی زیادی به عناصر ساختمان وارد می شود که منجر به ترکیدن و به خارج پرتاب شدن پنجره ها، دیوارها و کف ها می گردد. این فشار داخلی باید به صورت موضعی محدود و کنترل شود و نباید باعث فروریختگی تدریجی ساختمان گردد.

علل ممکن برای بارهای انفجاری خارجی از غرش های صوتی نسبتآ کم اهمیت است (مانند پنجره های شکسته شده و دیوارهای گچی ترک خورده). تحقیقات وسیعی روی واکنش سازه ها در برابر اثرات سلاحهای اتمی در جریان است تا بتوان ساختمان را چنان طرح کرد که در مقابل حمله اتمی مقاوم باشند.

• ترکیب بارها روی ساختمان

ساختمانهای بلند درطول عمرشان در معرض بارهای متعدد می باشد و بسیاری از بارها به طور همزمان روی سازه وارد می شود.اگر بارها خط اثر مشترک داشته و با یکدیگر باید ترکیب شود. این شرط لازم می سازد که در طرح سازه ها تمام ترکیبات ممکن بارها در نظر گرفته شود.

احتمال وقوع بارهای ترکیب شده باید به طور آماری ارزیابی و اثر آن تخمین زده شود. هرچقدر که اثر بار با دقت بیشتری تعیین شود لزوم انتخاب ضرایب اطمینان بزرگتر برای جبران عوامل مجهول کاهش می یابد.

ترکیب موثر و عملی بارها در آئین نامه ها مشخص گردیده است. بطور کلی تشخیص داده شده است که ماکزیمم بالای ناشی از تغییرات جوی و زلزله احتمالا هرگز با مقدار کامل بارهای زنده دیگر همزمان رخ نخواهد داد از این رو موقعی که بار زنده کامل به طور همزمان با بارهای ماکزیمم باد یا زلزله به کار می رود آئین نامه اجازه می دهد که بر تنشهای مجاز 33 درصد افزوده شود.

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 

 



:: برچسب‌ها: کلینیک بتن ایران ,
:: بازدید از این مطلب : 230
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : یک شنبه 6 خرداد 1397 | نظرات ()
نوشته شده توسط : کلینیک بتن ایران

 

یکی دیگر از الیاف های که در بتن مسلح استفاده می شود بتن الیاف پلیمری می باشد یکی از مزایای الیاف پلیمری مرکب نسبت به مواد فلزی پدیده خستگی می باشد که در گذشته درصنایع هوایی استفاده می شد و رفتار خوبی را در مقابل خستگی از خود نشان داده اند فولاد معمولاًدر اثر گسترش ترک به طور ناگهانی گسیخته میشود ولی مواد مرکب پلیمری در اثر پارگی الیاف و یا ماتریس در سطح تماس الیاف بسیار کند گسیخته و همچنین در بتن دیده می شود. پراکندگی قابل ملاحظه موجود در نتایج آزمایشها روی مواد مرکب پلیمری باعث شده که در عمل تنش طراحی کمتری برای این مواد در نظر گرفته شود. طبق نظر دوهوفر (1973)، رفتار خستگی رزینها مختلف با توجه به تفاوت شیمیایی زیاد فرقی نمی کند ولی اپوکسی ها عملکرد خستگی بهتری دارند.

طبق نظر هالاوی (1993) مکانیزم تخریب مواد پلیمری مرکب عبارت است از:

1-ترک برداشتن ماتریس

2-لایه لایه شدن مواد

3-پارگی الیاف

4-از بین رفتن چسبندگی بین ماتریس والیاف

طبق نظریه کرسیس(1989):ورقها با الیاف یک جهته به دلیل اینکه تمام بار درجهت نیرو به الیاف وارد میشودمقاومت خستگی خوبی دارند ورقه ورقه شدن الیاف مرکب به علت تنشهای بین صفحه ای میباشد معمولاً از انتهای آزاد وتکیه گاه شروع می شود وبه طرف داخل ورق گسترش می یابد.

یک مکانیزم مهم خرابی جدای بین الیاف و رزین در سال 1973 دو هیو فز مشاهده کرد:

Gfrp باعث جداشدگی میشود ولی در GFrp تازه تا70درصد مانع جدا شدگی می شود. استاتیکی 30درصد مقاومت

ترمیم وتقویت سازه های بتن مسلح با استفاده از روش الیاف پلیمری مرکب در بتن مسلح (اف ار پی):

درحقیقت پوشش کاملی از ورقهای نا زک فولاد والیاف پلیمری مرکب است که می توان آن را برای تقویت تیرها وستون ها ودال هاو...استفاده نمود. مقاوم سازی با الیاف فولادی از طریق چسباندن به وسیله چسب رزین واپوکسی در تیرها وستون ها انجام میگیرد در ترمیم تیرها و ستون ها به روش (اف ار پی ) با الیف پلیمری مرکب باید موارد زیر را در نظر داشت:

شرایط به کار گیری و سختی کار :

1-ابعاد لایه تقویت درهندسه و وزن بنا

2-دوره زمانی اجرای طرح تقویت 
3-هزینه اجرای طرح


انواع الیاف فولادی مرکب در ساختمان شامل زیر میباشد:

1-الیاف شیشه

2-الیاف کربن

3-الیاف آرامید

در الیاف مرکب فولادی می توان از چند نوع الیاف استفاده کرد که به ان هیبرید (Hybrid) گویند.

1- الیاف شیشه ای: رایج ترین وپر مصرف ترین نوع الیاف مورد استفاده در سقف کامپوزیت است. بر حسب نوع ترکیب مواد به کار رفته به انواع گوناگون تقسیم میشوند. مزایای این الیاف قیمت پایین واستحکام کششی بالا ومقاومت شیمیای بالاو خواص عایقی بالا میباشد معایب آنها عبارتست از مدول کششی پایین و وزن مخصوص نسبتاً بالا وحساسیت در برش وهمچنین با دما ورطوبت نیز استحکام کاهش می یابد.

2- الیاف کربن: دانسیسته آن 22.7 کیلو نیوتن برمتر مکعب می باشد وشکل مختلف ان بلوری می باشد وضخامت ان نازکتر از موی انسان می باشد و دارای قطر 6-10میکرو متر می باشد.

مزایایی اصلی آن:

استحکام بالای خستگی-مقاومت در برابر خوردگی- ضریب انبساط حرارتی پایین

معایب:

قیمت بالا -کرنش در شکست-هادی الکتریکی

3- الیاف آرامید:

پلیمر های آرامید دارای خصوصیاتی چون نقطه ذوب بالا و پایداری حرارتی عالی ومقاومت در برابر شعله وغیر قابل حل بودن در بسیاری از حلال های آلی شناخته شده اند دانسیسته ان بین 12-14.6 کیلو نیوتن بر متر مکعب می باشد دارای خواصی چون مقاوت در برابر ضربه عدم حساسیت به شکاف خواص الکتریک- خود خاموش کنی از خصوصیات آن می باشد.

منبع: ایران سازگان

نویسنده : کلینیک  بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))



:: بازدید از این مطلب : 229
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : یک شنبه 6 خرداد 1397 | نظرات ()
نوشته شده توسط : کلینیک بتن ایران

 

در این مقاله ابتدا به اهمیت دوام و سیر تدریجی بها دادن به مسئله دوام پرداخته شده است و ضمن اشاره به بررسی دوام از دیدگاه های مختلف، نیاز به انجام آزمایش های دوام مطرح گردیده است. همچنین سعی شده است این آزمایش ها از جهت بررسی مستقیم یا غیرمستقیم دوام بتن طبقه بندی گردد و مشکلات آزمایش های دوام و ارتباط آن با واقعیت طرح شود. در بخش دیگر به برخی آزمایش های رایج و معروف موجود پرداخته شده است.

مقدمه

دوام یا پایایی بتون متناظر با سن یا عمر خدمت رسانی آن در شرایط محیطی مشخص به شمار می آید. بدیهی است با تغییر شرایط محیطی حاکم بر بتن، مفهوم دوام بتن تغییر می کند.

طبق تعریف ACI 201، دوام بتن حاوی سیمان پرتلند به توانایی آن برای مقابله با عوامل هوازدگی، تهاجم شیمیایی، سایش بتن و یا هر فرآیندی که به آسیب دیدگی می انجامد، گفته می شود. بنابراین، بتن پایا بتنی است که تا حدود زیادی شکل اولیه و کیفیت و قابلیت خدمت رسانی خود را در شرایط محیطی حاکم حفظ نماید [1].

اکنون لزوم منظور نمودن مشخصات دوامی مصالح مصرفی در سازه ها همانند مشخصات مکانیکی پذیرفته شده است که همراه آن هزینه نیز منظور می گردد.

افزایش فزاینده هزینه های تعمیر و بازسازی سازه های آسیب دیده ناشی از تخریب مصالح مصرفی، بخش قابل توجهی از هزینه ساخت سازه ها را به خود اختصاص می دهد [2].

برآورد می گردد در کشورهای پیشرفته صنعتی بیش از 40 درصد کل منابع پولی صنعت ساختمان در بخش تعمیر و نگهداری سازه های موجود، و کمتر از 60 درصد آن برای ایجاد سازه های جدید خرج می گردد [2].

این موارد ما را بر آن می دارد که موضوع دوام مصالح مصرفی بویژه بتن را جدی بگیریم. علاوه بر هزینه، موضوع حفظ محیط زیست و آلودگی هوا و خاک و آب کره زمین و حفظ منابع خدادادی طبیعی این کره خاکی، ما را مجبور به با دوام تر ساختن بتن می نماید.

سازه هایی همچون رویه های بتنی راه، فرودگاه و پارکینگ ها، بتن های سیلوهای غلات و سیمان و سایر مصالح معدنی، پلهای راه و راه آهن، باراندازها و اسکله های بتنی و پلهای ارتباطی آن، مخازن آب یا نفت و گاز مایع و غیره، جداول بتنی و قطعات نیوجرسی، قطعات پیش ساخته ای همانند تراورس و لوله های بتنی آب و فاضلاب، سازه های بتنی فراساحلی، سدهای بتنی و سرریزها، پوشش بتنی پیش ساخته و درجا برای تونل های راه و راه آهن و انتقال آب، سازه های بتنی تصفیه خانه های آب و فاضلاب، سازه های بتنی راکتورهای اتمی و تاسیسات وابسته به آن، کانالهای انتقال آب و آبروهای بتنی، دودکش ها و برج های مخابراتی بتنی، ساختمانها و بناهای مسکونی، تجاری، اداری و آموزشی، فرهنگی و ورزشی، نیروگاه های آبی، گازی و حرارتی، برجهای خنک کن باز و بسته نیروگاه های حرارتی، سازه های مرتبط با صنایع مختلف مانند سیمان، نفت و گاز، فولاد، شیشه و صنایع مختلف کشاورزی و غذایی، ساخت قطعات پیش ساخته غیرمسلح یا مسلح برای حفاظت از موج شکن ها و تاسیسات بندری و غیره از جمله مواردی است که مصرف بتن با دوام و قطعات بتنی با عمر زیاد را می طلبد.

هرچند از دیرباز مسئله دوام مصالح ساختمانی اهمیت داشته است اما بعد از جنگ جهانی دوم و بویژه از دهه 70میلادی به موضوع دوام بتن بیش از پیش پرداخته شده است و مرتبا بر اهمیت آن افزوده می شود.

گستره دوام بتن به مراتب وسیع تر از موضوع مقاومت آن می باشد. تعیین مقاومت بتن به ویژه مقاومت فشاری آن امری است که طی سالیان گذشته به مدت بیش از 100سال به انجام رسیده است و به نظر می رسد حاوی نکات پیچیده ای نباشد، هرچند دارای جزئیات خاصی است و به هرحال در سن خاصی در کوتاه ترین زمان ممکن اندازه گیری می شود. اما در مورد دوام پیچیدگی بیشتری بدلیل ساز و کارهای متفاوت و آزمایش های گوناگون وجود دارد [3].

طبقه بندی ساز و کار دوام و آزمایش های آن

دوام بتن دوام بتن ابعاد مختلفی دارد [2]:

- پایایی در برابر عوامل فیزیکی (آتش، یخبندان و آب شدگی پی در پی، تبلور نمک ها)

- پایایی در برابر تهاجم شیمیایی (سولفات ها، کربناسیون، تاثیر واکنش قلیایی ها با سنگدانه ها بر بتن)

- پایایی در برابر عوامل مکانیکی (سایش، خلازایی)

- تخریب در اثر خوردگی میلگرد

پی بردن به دوام بتن در شرایط مختلف نیاز به قرار گرفتن در این شرایط و طی شدن زمان قابل توجه دارد و معمولا امکان انجام تحقیق در شرایط واقعی وجود ندارد و یا از حوصله دست اندرکاران خارج است. برای اینکه مشخص شود یک بتن در چنین شرایطی بطور مناسب و مطلوب عمل می کند نیاز به آزمایش هایی کوتاه مدت دارد که در این آزمایش ها عوامل تهاجمی یا اعمالی تشدید می شود (تسریع شده) و یا آزمایش بصورت تسریع نشده و در شرایط معمولی انجام می گردد که در این حالت دوم معیار مقایسه تغییر می کند.

گاه برخی آزمایش های کوتاه مدت مرتبط با دوام و در معرض عاملی غیر از عامل موردنظر مورد استفاده قرار می گیرد و با توجه به تجربیات موجود در پروژه های واقعی و در کارهای تحقیقاتی آزمایشگاهی معیارهایی ارائه می شود.

نمونه ای از آزمایش های کوتاه مدت تسریع شده در برابر عامل تشدید شده موردنظر، سایش یا آزمایش ASTM C1293 می-باشد.

نمونه ای از آزمایش تسریع نشده کوتاه مدت در شرایط تشدید نشده را می توان آزمایش یخبندان و آب شدگی دانست.

از میان آزمایش های کوتاه مدت مرتبط با دوام که در معرض عامل اصلی موردنظر قرار نگرفته است می توان آزمایش جذب آب یا جذب آب مویینه را نام برد. شاید بتوان آزمایش های جمع شدگی را نیز مرتبط با دوام دانست. آزمایش های تراوایی (نفوذپذیری) نیز مرتبط با دوام به حساب می آید.

ارزیابی کیفیت بتن از نظر دوام و معیارهای آن

ارزیابی دوام از طریق انجام آزمایش هایی بر روی بتن سخت شده در سنین کم و گاه در سن موجود صورت می گیرد. برای این کار نیاز به معیارها و ملاک هایی می باشد. در زیر به برخی از آزمایش های ارزیابی بتن و معیارهای آن اشاره می شود.

آزمایش های یخ زدن و آب شدن

این آزمایش ها به دو صورت در استانداردها وجود دارد:

- یخبندان و آب شدگی پی در پی در حالت اشباع در آب یا هوا و کنترل کاهش وزن، کاهش مقاومت، افزایش حجم و کاهش مدول ارتجاعی دینامیکی مانند ASTM C666 [4]

- یخبندان و آب شدگی پی در پی در مجاورت آب نمک یا نمک های یخ زدا و کنترل پوسته شدن سطح بتن و کاهش وزن آن مانند ASTM C1262 [5]، ASTM C672 [6] و EN 1340 [7]

به هرحال این آزمایش ها عمدتا در سنین کم 28 تا 90 روزه بر روی بتن ها در آزمایشگاه انجام می شود و مدت زمان زیادی بطول می انجامد.

امروزه در آزمایش های یخبندان در حالت اشباع مانند ASTM C666 از پارامتر کاهش مدول ارتجاعی دینامیکی استفاده می شود. پس از تعداد معینی سیکل یخبندان، درصد مدول ارتجاعی دینامیکی اولیه بدست می آید. حداقل درصد قابل قبول مدول ارتجاعی دینامیکی اولیه، یک ملاک یا ضابطه تلقی می شود. مثلا بتنی با دوام تلقی می گردد که پس از 300 سیکل یخبندان و آب شدگی مکرر، حداقل 60 و یا 80 درصد مدول ارتجاعی دینامیکی را دارا باشد [4].

در مواردی تعداد سیکل های یخبندانی را که مدول ارتجاعی دینامیکی را به 60 درصد مقدار اولیه می رساند مشخص می گردد. بدیهی است در این حالت باید حداقل تعداد سیکل های یخبندان مورد نظر به عنوان یک معیار اعلام گردد [4].

در آزمایش های یخبندان و آب شدگی پی در پی در معرض مواد یخ زدا معمولا درصد وزن بتن پوسته شده پس از تعداد معینی سیکل یخبندان بدست می آید. با محدود کردن میزان مواد پوسته شده، معیاری ارائه می گردد. به عنوان مثال در ASTM C1372 [8] پس از 100سیکل خاص یخبندان در آزمایش ASTM C1262 [5] نباید از 1درصد وزن اولیه بیشتر شود.

هرچند در این آزمایش نیز می توان تعداد سیکل یخبندان برای دستیابی به درصد خاصی از پوسته شدن را به عنوان یک معیار برگزید، اما این امر سابقه چندانی ندارد.

برای مثال در EN1340 برای جداول بتنی پیش ساخته مقدار مواد پوسته شده نباید از kg/m3 1 پس از 28 سیکل خاص یخبندان در حالی که محلول نمک طعام 3 درصد بر روی آن ریخته شده است، بیشتر باشد [7].

در ASTM C672 معمولا پس از 50 سیکل یخبندان خاص در معرض مواد یخ زدا (محلول کلرید کلسیم 4 درصد) که روی قطعه ریخته می¬شود و درجه تخریب سطح پس از 5، 10، 15، 25 و 50 سیکل گزارش می شود که معیار درجه تخریب ارائه می شود [6].

به هر حال باید دانست که در همه انواع آزمایش یخبندان و آب شدگی مکرر در برابر آب یا نمک های یخ زدا، شرایط آزمایش با واقعیت موجود تطابق ندارد اما به ناچار از این آزمایش ها و معیارهای ارزیابی آن استفاده می شود.

در ASTM C1262 که برای قطعات پیش ساخته بتنی و برخی قطعات بنایی بکار می رود و آب یا آب نمک 3درصد (بسته به نیاز) در مجاورت قسمت تحتانی قطعه ریخته می شود و معمولا سیکل های خاص یخبندان اعمال می گردد و درصد کاهش وزن بدست می آید. با توجه به معیار خاص کاهش وزن در برابر تعداد خاصی سیکل یخبندان کیفیت دوامی قطعه کنترل می شود [5].

آزمایش تبلور نمک ها

برای بررسی تاثیر تبلور نمک ها بر دوام بتن، آزمایش خاصی پیش بینی نشده است، هرچند عامل مهمی در مناطق نیمه خشک و خشک در تخریب سطح بتن ها محسوب می شود بویژه اگر املاح قابل توجهی در بتن و یا آب و خاک وجود داشته باشد [2].

آزمایش دوام در برابر سولفات ها

برای بررسی دوام بتن در برابر سولفات ها آزمایش استاندارد خاصی در ASTM و EN مشاهده نمی شود. همچنین روشن است که معیار خاصی نیز وجود ندارد. پس از سالهای طولانی که از تشخیص خرابی بتن در اثر حمله سولفات ها گذشته است هنوز آزمایش خاص و معیار دوام بتن در برابر حمله سولفات ها و یا در برابر سولفات خاصی ارائه نشده است [8].

سعی می شود با استفاده از سیمان مناسب، محدودیت نسبت آب به سیمان و یا عیار سیمان و یا استفاده از افزودنی های بتن مانند پوزولان ها و سرباره ها و یا حباب¬زا و مواد آب¬بند کننده، دوام بتن را بالا برده اما نحوه تشخیص این افزایش دوام روشن نیست [1].

سعی شده است آزمایش هایی بر روی سیمان یا ملات در محلول سولفات دار انجام گردد و انبساط آنها اندازه گیری شود و با تعیین معیارهایی، کیفیت سیمان از نظر مقابله با حمله سولفات ها مشخص گردد [9 و 10].

آزمایش هایی برای نفوذ و انتشار سولفات در بتن پیش بینی شده است اما هنوز استاندارد نشده است. با این حال نفوذ سولفات در بتن دقیقا نمی تواند دوام بتن در برابر سولفات ها را به نمایش گذارد [11 و 12].

آزمایش کربناسیون

آزمایش ساده و معمول تعیین عمق کربناسیون تا چندی پیش صرفا بر اساس دستورالعمل RILEM CPC18 انجام می گردید [13] که EN نیز به تازگی دستورالعمل استانداردی را مشابه RILEM ارائه کرده است [14]. در این آزمایش عمق بتن کربناته شده با محلول فنل فتالئین به عنوان یک معرف اندازه گیری می شود. معمولا این آزمایش بر روی بتن سخت شده در شرایط محیطی واقعی اندازه گیری می شود که می توان تحت شرایطی نفوذ CO2 را تسریع نمود [13].

به هرحال هنوز معیار خاصی برای قدرت مقابله با کربناسیون و عمق نفوذ آن ارائه نشده است، هرچند می توان میزان نفوذپذیری گاز CO2 در بتن را اندازه گیری نمود.

می توان با اندازه گیری pH پودر بتن پروفیل pH در برابر عمق را رسم کرد و عمق کربناسیون را مشخص نمود [15].

آزمایش انبساط ناشی از واکنش قلیایی ها با سنگدانه های بتن

معمولا بیشتر آزمایش ها در این زمینه بر روی ملات می باشد و یا شرایط خاصی همچون تشدید شرایط حاکم و یا افزایش قلیایی ها در ملات و یا محیط نگهداری را دارا می باشد. طبق استاندارد ASTM C1293 و تعدادی از استانداردهای کانادایی، انبساط بتن در شرایطی نزدیک به واقع اما در دمای 38 یا 60 درجه با رطوبت 100درصد را در زمانی طولانی تر از 6ماه و یا یک سال و بیشتر بدست می آورند [16].

معیارهایی همچون انبساط 04/0 درصد پس از سه ماه در 60 درجه سانتیگراد و یا پس از یک سال در 38 درجه سانتیگراد ارائه شده است. به هرحال در این آزمایش انبساط بالقوه بتن بدست می آید [17، 18 و 19].

برای سنگدانه کربناتی از ASTM C1105 استفاده می شود و معیارهایی برای آن ارائه شده است [17 و 20].

آزمایش های سایش

در استاندارد ASTM برای بتن چهار آزمایش سایش ارائه شده است و برای برخی قطعات بتنی نیز از این آزمایش ها و یا آزمایش های دیگری استفاده می شود.

- ASTM C944 برای سایش بتن یا ملات (روش سمباده چرخان) [21]

- ASTM C418 برای سایش بتن (روش ماسه پاشی) [22]

- ASTM C779 برای سایش سطوح افقی بتنی (سه روش صفحه مدور سمباده ای چرخان، چرخ استوانه ای دندانه دار، بلبرینگ چرخان) [23]

- ASTM C1138 برای سایش بتن (روش زیر آب) [24]

به نظر می رسد در آزمایش های سایش دقت زیادی شده است تا نزدیکی بیشتری با واقعیت موجود داشته باشد که تنوع آزمایش ها را سبب گشته است.

در موارد مختلف برای هر نوع قطعه یا سطح در هر پروژه یا کاربرد خاص، معیاری ارائه می شود که نشانه دوام بتن در برابر سایش است. در برخی استانداردهای دیگر آزمایش سایش چرخ عریض و آزمایش سایش Bohme پیش بینی شده است. برای مثال در استاندارد جداول بتنی (EN 1340) این دو آزمایش پیش بینی شده است و معیار خاصی در هر مورد ارائه شده است [7].

جدول 1- تقسیم بندی کیفیت سایشی جداول بتنی طبق EN 1340 [7]

رده از نظر سایش*

نتیجه آزمایش سایش چرخ پهن (حداکثر)

نتیجه آزمایش سایش Bohme (حداکثر)

متوسط

23 میلی¬متر

کمتر از mm25000/mm320000

خوب

20 میلی¬متر

کمتر از mm25000/mm318000

* در مورد رده ضعیف هیچ ضابطه ای ارائه نمی شود.

آزمایش های نفوذپذیری

آزمایش های نفوذپذیری بتن در برابر آب و گازهای مختلف و حتی برخی سیال های خاص دیگر انجام می شود.

آزمایش های نفوذپذیری در برابر آب

آزمایش های نفوذپذیری بتن در برابر آب از گذشته دور براساس رابطه دارسی انجام می شده است. ارتش آمریکا و USBR آزمایش هایی را برای تعیین ضریب نفوذپذیری بتن در برابر آب ارائه کرده اند که بسیار مشکل است. در روش ارتش آمریکا (CRD-C48) فشار حدود 14 اتمسفر و در روش USBR 4913 فشار 5/28 اتمسفر بکار می رود [25 و 26]. در این آزمایش¬ها مقدار k با بعد L/T بدست می¬آید. در هر پروژه مقدار حداکثر k مشخص می¬شود و لازم است بتن موردنظر این خواسته را برآورد کند.

بتن هایی که در حال حاضر برای پروژه های آبی ساخته می شود دارای نفوذپذیری پایینی است و عملا انجام این آزمایش و تعیین k بصورت مستقیم غیرممکن گشته است. بدین دلیل سعی شده است با اندازه گیری عمق نفوذ آب در این آزمایش و با استفاده از یک سری روابط تجربی بر اساس فرضیات مختلف، از عمق نفوذ مقدار k را بدست آورد که نتایج آن قابل اعتماد نمی باشد.

جدول 2- تقسیم بندی کیفیت نفوذناپذیری بتن بر اساس ضریب نفوذپذیری آب [27]

کیفیت نفوذناپذیری بتن

خیلی ضعیف

ضعیف

متوسط

خوب

خیلی خوب

عالی

ضریب نفوذپذیری (m/s)

بیشتر از 6-10

6-10 تا 7-10

7-10 تا 8-10

8-10 تا 9-10

9-10 تا 10-10

کمتر از 10-10

همچنین روش های درجا و آزمایشگاهی معروف دیگری نیز وجود دارند که به جای ارائه ضریب نفوذپذیری، شاخص های نفوذپذیری را بدست می دهند. از جمله این آزمایش ها می توان به آزمایش فیگ (Figg) و یا آزمایش Autoclam اشاره کرد. این آزمایش ها در ایران رایج نیست و ممکن است به ندرت در کارهای تحقیقاتی استفاده شده باشد. به هرحال محققین بر اساس این آزمایش ها معیارها و طبقه بندی هایی را برای کیفیت بتن ارائه کرده اند.

آزمایش های نفوذپذیری در برابر گاز

آزمایش های نفوذپذیری با گاز به ویژه اکسیژن روش های مختلفی دارد که معروف ترین آن مربوط به روش CemBureau (انجمن سیمان اروپا) می باشد که در RILEM و استاندارد ایتالیا (UNI) نیز آورده شده است [28 و 29].

در این روش، نمونه قرصی شکل بتنی در محفظه¬ای با تیوب دورگیر تحت فشار قرار گرفته و در فشارهای مختلف اعمالی، دبی عبوری گاز بدست آمده و با رابطه اصلاح¬شده دارسی برای سیال تراکم پذیر، ضریب نفوذپذیری محاسبه می¬گردد. نتیجه این روش آزمایش به درصد رطوبت نمونه بتنی بسیار وابسته می باشد. به همین دلیل، در روش پیشنهادی این آزمایش، دو رژیم نمونه کاملا خشک و با درصد رطوبت مشخص، پیشنهاد شده است [28 و 29].

معیار میزان نفوذپذیری در برابر اکسیژن در مشخصات فنی داده می شود اما تلاش شده است بتن ها از این نظر تقسیم بندی شوند که در زیر دیده می شود.

جدول 3- تقسیم بندی کیفیت بتن بر اساس نفوذپذیری بتن در برابر اکسیژن به روش CemBureau(نمونه خشک) [30]

کیفیت

عالی

خیلی خوب

متوسط

ضعیف

خیلی ضعیف

ضریب نفوذپذیری (m2 16-10)

کمتر از 1/0

5/0 – 1/0

5/2 – 5/0

5/12 – 5/2

بیشتر از 5/12

در منطقه خلیج فارس با توجه به آیین نامه پایایی بتن، برای شرایط D، E و F کیفیت عالی و برای B و C خیلی خوب و برای شرایط A حالت کیفی متوسط پیشنهاد می شود. هرچند ممکن است با بکارگیری چنین بتن هایی در عمل به نتیجه چندان خوبی هم دست نیافت.

آزمایش های نفوذپذیری در برابر یون کلرید (آزمایش های انتشار یون کلرید)

کامل ترین راه برای تعیین ضریب انتشار یون کلرید در بتن طبق روش جدید ASTM C1556 [31] که مشابه روش NTBuild 443 [32] است، می باشد. در این روش بتن سخت شده در محلول نمک طعام با غلظت معین قرار می گیرد و در سن موردنظر پس از خشک کردن آن، با تعیین یون کلرید در اعماق مختلف، با توجه به قانون فیک (Fick) ضریب انتشار یون کلرید بدست می آید که بعد آن L2/T است.

برای بتن هر پروژه می توان ضریب انتشار خاصی را درنظر گرفت. بتن ها از این نظر به ویژه در شرایط رویارویی با یون کلرید تقسیم بندی می شوند که در زیر مشاهده می گردد.

جدول 4- تقسیم بندی نفوذپذیری بتن بر اساس ضریب انتشار یون کلرید [33]

طبقه بندی نفوذپذیری

شدید

متوسط

کم

ناچیز

ضریب انتشار یون کلرید (m2/s×12-10)

بیشتر از 5

1 تا 5

2/0 تا 1

کمتر از 2/0

ضریب انتشار یون کلرید (mm2/Year)*

بیشتر از 15

3 تا 15

6/0 تا 3

کمتر از 6/0

* اعداد ذکر شده دقیقا با ردیف فوق یکسان نیست.

یکی از پارامترهای منحصربفردی که می توان به کمک آن و بهره گیری از اطلاعات و فرضیات دیگر در هر سنی غلظت یون کلرید پیش بینی نمود در هر عمقی به چه میزان است، ضریب انتشار یون کلر می باشد و بر این اساس زمان رسیدن غلظت یون کلرید در مجاورت میلگرد به حد آستانه تعیین می گردد که زمان شروع خوردگی را مشخص می کند [34].

معمولا از آنجا که تعیین این پارامتر دشوار است، سعی می شود بجای آن، پارامترهای دیگری مشخص شود و جایگزین آن گردد در حالی که عملا نمی توانند جای آن را بگیرند.

یکی از آزمایش های رایج AASHTO T259 است که سطح بتن در معرض محلول کلرید قرار می گیرد و مقدار یون کلرید در سنین خاص و در عمق های خاص اندازه گیری می شود و عمق نفوذ یون کلرید بدست می آید که به کمک آن می توان کیفیت بتن ها را در مقایسه با یکدیگر ارزیابی نمود و می توان بتن ها را نیز از این نظر طبقه بندی کرد. به هرحال نتیجه این آزمایش از جنس نفوذپذیری نیست اما نفوذپذیری را نشان می دهد [35].

روش دیگر برای تعیین نفوذ سریع یون کلرید (مهاجرت) توسط دستور NTBuild 492 [36] ارائه شده است که AASHTO T277 [37] روش مشابه آن را ارائه کرده است.

استاندارد ASTM C1202 روش را برای تعیین سریع نفوذپذیری کلرید در بتن سخت شده ارائه می دهد که در این روش در دو سمت یک قرص بتنی کاملا اشباع شده در خلا به قطر حدود 100 میلیمتر و ضخامت 50 میلیمتر محلول های کلرید سدیم و سود سوزآور با غلظت معین قرار می گیرد و جریان الکتریکی با اختلاف پتانسیل 60 ولت برقرار می شود و شدت جریان عبوری از بتن اشباع بدست می آید و طی 6ساعت، مقدار جریان عبوری از بتن برحسب کولمب محاسبه می گردد که نشانه مقاومت بتن در برابر این جریان است و به عبارتی به نوعی به مقاومت الکتریکی مربوط می باشد. هرچه این جریان عبوری بیشتر باشد نشانه نفوذپذیری بیشتر بتن به ویژه در برابر یون کلرید است. طبقه بندی بتن ها را می توان طبق ASTM C1202 بصورت زیر دانست [38].

جدول 5- نفوذپذیری در برابر یون کلرید براساس میزان جریان عبوری

نفوذپذیری در برابر یون کلر

زیاد

متوسط

کم

خیلی کم

ناچیز

میزان جریان عبوری (کولومب)

بیشتر از 4000

2000 تا 4000

1000 تا 2000

100 تا 1000

کمتر از 100

در آیین نامه پیشنهادی پایایی بتن در محیط خلیج فارس و دریای عمان (نشریه شماره ض428 مرکز تحقیقات ساختمان و مسکن) معیارهای زیر برای شرایط مختلف طبق روش ASTM C1202 ارائه شده است [34].

جدول 6- مقادیر مجاز میزان جریان عبوری در شرایط مختلف محیطی در آیین نامه پایایی

شرایط محیطی

A

B و C

D، E و F

میزان جریان عبوری (کولومب)

حداکثر 3000

حداکثر 3000

حداکثر 2000

بهتر است در آینده با تجدید نظر در طبقه بندی موجود برای برخی رده های مورد نظر مانند E یا F شرط سخت گیرانه تری مانند 1200 یا 1000 کولومب منظور شود. در عوض برای شرایط محیطی A حداکثر 4000 کولومب نیز پذیرفته گردد.

به هرحال این آزمایش و نتایج آن محل تردید است. برخی معتقدند که بهتر است اختلاف پتانسیل را کم کرده و مدت را متناسبا زیاد نمود تا دمای بتن و محلول ها حین آزمایش بطور شدید بالا نرود و شرایط واقعی تری برقرار باشد [39]. ظاهرا قرار است تغییری در یکی از محلول ها نیز در دستور کار قرار گیرد. به هرحال این آزمایش طی یک روز منجر به اخذ نتیجه می شود و این امر بسیار مهم است.

آزمایش های عمق نفوذ آب

از آنجا که آزمایش های نفوذپذیری در برابر آب همراه با چالش های فراوانی است، در برخی کشورهای اروپایی مانند آلمان آزمایش دیگری انجام می شد که تحت فشار آب، در زمان معینی، عمق آب نفوذی در بتن بدست می آمد (DIN 1048-5) [40]. سپس در EN 12390-8 با تغییرات مختصر، این آزمایش با سهولت بیشتر ارائه شد که در آن نمونه بتنی سه روز از سطح زیرین تحت فشار MPa 5/0 (5 بار) قرار می گیرد و سپس حداکثر عمق نفوذ آب بدست می آید که پارامتری در جهت ارزیابی نفوذ آب در بتن می باشد [41]. در منابع مختلف طبقه بندی بتن ها در آزمایش DIN 1048 آمده است اما هنوز این طبقه بندی برای آزمایش براساس روش EN ارائه نشده است. پراکندگی نتایج آزمونه های مختلف یک نوع بتن در این آزمایش زیاد است و چندان قابل اعتماد نمی باشد [33].

در آیین نامه پیشنهادی پایایی بتن در حاشیه خلیج فارس، معیارهای زیر برای شرایط مختلف محیطی حاکم ارائه شده است [34].

جدول 7- مقادیر مجاز عمق نفوذ آب در شرایط مختلف محیطی در آیین نامه پایایی

شرایط محیطی

A

B و C

D، E و F

عمق نفوذ آب در سن 28 روز (mm)

حداکثر 50

حداکثر 30

حداکثر 10

دستیابی به حداکثر عمق نفوذ آب 10 میلیمتر عملا بسیار مشکل است و با ضوابط دیگر انطباق مناسبی ندارد و تجدیدنظر در معیار آن ضروری به نظر می رسد. شاید حداکثر عمق نفوذ آب برای طبقه D را بتوان 20 میلیمتر و برای E و F حداکثر 10 یا 15 میلیمتر منظور نمود.

به هرحال الزاما در شرایط واقعی، فشار تا این حد وجود ندارد اما این آزمایش به نوعی تعیین کننده کیفیت بتن می باشد.

آزمایش های جذب آب

آزمایش های جذب آب به شکل های مختلفی وجود دارد که مهم ترین آنها عبارتند از:

- جذب آب کوتاه مدت نیم ساعته (Early Water Absorption)

- جذب آب نهایی (بلند مدت) 2 روزه یا بیشتر در شرایط عادی یا جوشانده شده (Final Water Absorption)

- جذب آب سطحی اولیه ISAT (Initial Surface Water Absorption Test)

- جذب آب مویینه ( Capillary Water Absorption و Water Sorptivity)

هرکدام از این آزمایش ها یک ویژگی خاص از بتن را به نمایش می گذارد و لازم است از هر آزمایش زمانی استفاده نمود که به واقعیت موجود شباهتی داشته باشد [42].

آزمایش جذب آب کوتاه مدت

در BS 1881 در سال های گذشته آزمونه مکعبی خشک 100میلی لیتری در آب غرق می شد و پس از یک ساعت درصد وزنی آب جذب شده بدست می آید که گزارش می شد. در BS 1881 part122 این آزمایش عمدتا برای قطعات بتنی پیش ساخته پس از مغزه گیری به قطر 75 میلیمتر انجام می شود که باید دارای طول معینی باشد و نمونه کاملا خشک شده در آون، غرقاب می شود و درصد جذب آب نیم ساعته بدست می آید [43]. این آزمایش کیفیت سطحی بتن موردنظر را بدست می دهد.

در انگلیس کیفیت جداول بتنی و برخی قطعات پیش ساخته با این آزمایش کنترل می شود. برای مثال جذب آب نیم ساعته یک جدول نباید از 2درصد بیشتر باشد [44]. در آزمایش های جذب آب کوتاه مدت حساسیتی در مورد شکل و اندازه نمونه وجود دارد و نسبت سطح به حجم اهمیت پیدا می کند. در استاندارد BS 1881 ضرایب تصحیح خاصی پیش بینی شده است تا در صورت تغییر قطر و طول نمونه نسبت به قطر و طول استاندارد، بتوان نتایج تصحیح شده را محاسبه نمود [43].

در توصیه های CIRIA برای مناطق عربی در حاشیه خلیج فارس و دریای سرخ و غیره، حداکثر جذب آب کوتاه مدت طبق BS 1881 را 2 درصد مطرح نموده است [45].

در آیین نامه پیشنهادی پایایی بتن در حاشیه خلیج فارس، معیارهای زیر برای شرایط مختلف محیطی حاکم با روش BS 1881 part122 ارائه شده است [34].

جدول 8- مقادیر مجاز درصد جذب آب کوتاه مدت در شرایط مختلف محیطی در آیین نامه پایایی

شرایط محیطی

A

B و C

D، E و F

درصد جذب آب (%)

حداکثر 4

حداکثر 3

حداکثر 2

به نظر می رسد لازم است با تجدید نظر در مورد شرایط E و F مقدار حداکثر جذب آب نیم ساعته را به 5/1 درصد محدود کرد.

آزمایش جذب آب نهایی

هرچند در آزمایش جذب آب کوتاه مدت قدیمی و جدید BS 1881 می توان با تداوم آزمایش تا رسیدن به وزن ثابت، جذب آب نهایی را بدست آورد و حتی با جوشاندن آن در آب به جذب آب نهایی بیشتری دست یافت، اما در این دستور چنین پیش بینی هایی صورت نگرفته است.

در ASTM C642 مقدار جذب آب نهایی بدست می آید و می توان چگالی و تخلخل را نیز بدست آورد، حتی جوشاندن نمونه در آب نیز پیش بینی شده است. در این استاندارد در مورد شکل و اندازه نمونه حساسیتی وجود ندارد اما حداقل جرم و حجم مشخص شده است زیرا به موضوع جذب آب نهایی پرداخته است. این آزمایش عمدتا برای قطعات پیش ساخته بکار می رود [46].

در استاندارد EN 1340 جذب آب نهایی قطعات پیش ساخته ای مانند جداول بتنی به چشم می خورد که حداقل برای حجم یا جرم نمونه مطرح شده است [7]. در استانداردهایی همچون ASTM C497، مقدار جذب آب لوله های بتنی بدست می آید که دو روش A و B با توجه به نحوه خشک کردن و زمان جوشاندن نمونه در آب دارد [47].

برای مثال در برخی استانداردهای قطعات پیش ساخته در ASTM C76 مانند لوله های بتن مسلح آب و فاضلاب، حداکثر جذب آب نهایی طبق ASTM C497 به میزان 9درصد برای روش A و 5/8درصد برای روش B مطرح شده است [48] و از این نظر می توان معیار و طبقه بندی برای کیفیت دوامی بتن ارائه نمود، بویژه اگر قطعه بتنی بصورت غرقاب باشد و آب همواره در مجاورت آن حضور داشته باشد. در استاندارد لوله های بتنی آب و فاضلاب ایران به شماره 8906 از چنین مشخصاتی استفاده شده است [49].

در استاندارد EN 1340 در مواردی که شرایط یخبندان و آب شدگی حادی در برابر نمک های یخ زدا وجود ندارد. حداکثر جذب آب نهایی 6 درصد برای جداول بتنی پیش ساخته ارائه شده است [7].

به نظر می رسد برای بتن های با دوام، حداکثر جذب آب نهایی بتن بهتر است به 6 درصد و برای حالت جوشانده شده به 5/5 درصد محدود شود. برای مناطق حاشیه خلیج فارس بتن های موردنظر در شرایط محیطی طبقه بندی شده در آیین نامه پایایی بتن پیشنهادی، مقدار جذب آب نهایی زیر توسط اینجانب پیشنهاد می شود.

جدول 9- مقادیر مجاز درصد جذب آب کوتاه مدت در شرایط مختلف محیطی در آیین نامه پایایی

شرایط محیطی

A

B و C

D

E و F

حداکثر درصد جذب آب نهایی (%)

6

5

4

5/3

حداکثر جذب آب نهایی جوشانده (%)

7

5/5

5/4

4

در برخی مشخصات استاندارد قطعاتی مانند بلوک سیمانی و موزاییک و آجرهای سیمانی به جذب آب نهایی پرداخته شده است [50، 51 و 52].

آزمایش جذب آب سطحی اولیه

این آزمایش عمدتا در BS 1881 part208 پیش بینی شده است. در این آزمایش سعی می شود مقدار جذب آب ریخته شده روی سطح افقی نمونه بتنی یا قسمتی از قطعات پیش ساخته در حالی که ارتفاع آب چندانی برای اعمال فشار وجود ندارد و به میزان 200 میلیمتر محدود شده است، بدست آید. در این آزمایش در فواصل زمانی مختلف مقدار آب جذب شده برحسب گرم یا میلی لیتر بر واحد سطح (m2) گزارش می شود [53].

طبقه بندی کیفی بتن ها در این آزمایش را می توان بصورت زیر مطرح کرد. در انگلیس از نتایج این آزمایش استفاده می شود اما در آیین نامه پایایی بتن ایران در حاشیه خلیبج فارس و یا در استانداردهای قطعات پیش ساخته مانند جداول مورد اقبال قرار نگرفته است. به هرحال این آزمایش برای موادی که باعث آب بندی سطحی می شوند می تواند با موفقیت بکار رود و کیفیت سطحی را به نمایش گذارد [42].

جدول 10- تقسیم بندی جذب سطحی بتن با معیار جذب سطحی اولیه (mL/m2/s)

میزان جذب

زمان پس از شروع آزمایش

جذب تجمعی در ساعت (mL/m2)

10 دقیقه

30 دقیقه

1ساعت

2ساعت

زیاد

بیشتر از 50/0

بیشتر از 35/0

بیشتر از 20/0

بیشتر از 15/0

بیشتر از 2000

متوسط

50/0 – 25/0

35/0 – 17/0

20/0 – 10/0

15/0 – 07/0

2000 – 1000

کم

کمتر از 25/0

کمتر از 17/0

کمتر از 10/0

کمتر از 07/0

کمتر از 1000

به نظر می رسد در محیط خلیج فارس بویژه در شرایط D، E و F، میزان جذب باید در حد کم و یا در حدی به مراتب کمتر از آن باشد.

جذب آب مویینه

یک ساز و کار جذب آب، حرکت آب به صورت نم مویینه رو به بالا می باشد که نیاز به انجام آزمایش خاص و هماهنگ با این ساز و کار احساس می شود.

در این آزمایش ها معمولا مقدار آب جذب شده در واحد سطح، ارتفاع نم مویینه و آهنگ جذب آب مویینه تعیین و گزارش می شود که در همه دستورها بصورت یکسان نیست و در هر دستور به برخی از این پارامترها پرداخته می شود.

دستور آزمایش RILEM CPC11.2 از جمله دستورهای آزمایش قدیمی در این زمینه است که سالها مورد استفاده قرار گرفته است [54]. اخیرا دستور استاندارد ASTM C1585 ارائه شده است که با دقت بیشتری شرایط آزمایش و شکل آزمونه را مشخص نموده است [55]. در این آزمایش از یک قرص بتنی به قطر 100 میلیمتر و ارتفاع 50 میلیمتر استفاده می شود که بخش تحتانی آن به میزان 1 تا 3 میلیمتر در آب قرار گرفته است و رطوبت محیط اطراف نمونه نیز کنترل می گردد و درنهایت، آهنگ جذب آب مویینه در بازه های زمانی مختلف بدست می آید.

لازم به ذکر است که در این استاندارد دو مقدار آهنگ جذب آب اولیه و ثانویه بدست می آید که معمولا نرخ جذب آب ثانویه به مراتب کمتر از نرخ جذب آب اولیه است. در حالیکه در روش RILEM فقط یک نرخ جذب آب بدست می آید. نگاه ASTM به نرخ جذب آب از RILEM منطقی تر به نظر می رسد و اشکال موجود در روش RILEM و مشکلات برازش یک خط بر چهار نقطه موجود در این روش را حل نموده است. ضمن اینکه تعداد نقاط رسم شده در صفحه مختصات را به مقدار قابل توجهی افزایش داده است و با برازش دو خط به دو مجموعه از این نقاط، برخورد واقع¬بینانه تری داشته است.

هنوز طبقه بندی خاصی در مورد کیفیت بتن ها با کاربرد این آزمایش مطرح نشده است و آنچه در زیر مشاهده می شود عمدتا مربوط به آزمایش های انجام شده بر اساس دستور RILEM می باشد [56].

جدول 11- محدوده پذیرش جذب آب مویینه بتن با دوام

کیفیت بتن

عالی

خیلی خوب

خوب

متوسط

ضعیف

جذب آب (mm/h-0.5)

کمتر از 1/0

1/0 تا 15/0

15/0 تا 2/0

2/0 تا 25/0

بیشتر از 25/0

هرچند ساز و کار برخی خرابی ها در ایران و حتی جنوب کشور مربوط به جذب آب مویینه است، اما در دستورهای استاندارد ایران این آزمایش برای بتن جایگاهی ندارد و طبعا مشخصات استاندارد و محدودیت خاصی نیز مطرح نگردیده است. به هر حال به نظر می رسد برای شرایط E و F، کیفیت عالی و یا بهتر از آن، برای شرایط D کیفیت خیلی خوب یا عالی، برای B و C حالت خوب یا خیلی خوب و برای رده A، کیفیت خوب یا متوسط کاربرد دارد.

آزمایش مقاومت ویژه الکتریکی

سهولت یا سختی عبور جریان الکتریکی از بتن اشباع می تواند نشانه ای از نفوذپذیری آن در برابر آب و به ویژه انتشار و مهاجرت یونی (به ویژه یون کلرید) باشد مخصوصا اگر با آب نمک اشباع گردد.

این آزمایش بین پژوهشگران بسیار معروف و رایج است اما دستور استاندارد خاصی برای آن تدوین نشده است.

این آزمایش با استفاده از دو صفحه مسی یا برنجی که بر سطح آزمونه بتنی اشباع از آب به کمک خمیر سیمان تازه می چسبد و مقاومت الکتریکی به کمک اعمال یک جریان متناوب با فرکانس مشخص بدست می آید. می توان با داشتن سطح بتن و فاصله بین دو صفحه فلزی، مقاومت ویژه الکتریکی را بدست آورد. همچنین می توان با چهار الکترود (روش ونر) و تعبیه آن بر سطح بتن یا در سوراخ خاص و برقراری اتصال و تماس الکتریکی، مقاومت الکتریکی و مقاومت ویژه آن را بدست آورد.این روش برایقطعات بتنی موجود نیز قابل استفاده است، در حالی که روش قبلی فقط برای آزمونه های آزمایشگاهی مکعبی، استوانه ای یا منشوری و مکعب مستطیل کاربرد دارد. در صورتی که نخواهیم مقاومت ویژه الکتریکی را بدست آوریم از دو الکترود استفاده کرد که به عمق معین و فاصله معینی از یکدیگر در بتن فرو می رود و بصورت مقایسه ای می توان مقاومت الکتریکی بتن را در بین دو الکترود بدست آورد.

در راه انجام این آزمایش مشکلات و مباحث خاصی مطرح می شود که عبارتند از:

- میزان رطوبت و اطمینان از اشباع بودن بدلیل تاثیر شدید رطوبت بر مقاومت الکتریکی بتن

- نوع جریان و فرکانس مصرفی بدلیل تاثیر آن بر نتایج حاصله

- نقش شکل و اندازه نمونه بر نتایج حاصله

- نقش روش آزمایش (الکترود چهارگانه یا صفحات)

- نقش افزودنی های شیمیایی در تغییر نتایج

- نقش مقاومت الکتریکی سنگدانه های بتن در تغییر نتایج

- نقش هدایت الکتریکی الکترولیت موجود در منافذ به علت املاح محلول در آن

- نقش دما در مقاومت الکتریکی

به هرحال لازم است با محدود کردن تغییرات احتمالی، دستور استاندارد واحدی را تدوین کرد و بتن ها را از این نظر مقایسه نمود و طبقه بندی کرد. ظاهرا کمیته ای در ASTM مشغول به تدوین چنین دستورالعملی می باشد [15، 57، 58 و 59].

طبقه بندی زیر که معیاری جهت ارزیابی بتن محسوب می شود، ارائه شده است [39].

جدول 12- تقسیم بندی احتمال خوردگی میلگرد براساس آزمایش مقاومت الکتریکی

احتمال خوردگی میلگرد

خیلی زیاد

زیاد

کم

ناچیز

مقاومت ویژه الکتریکی بتن (اهم-متر)

کمتر از 50

50 تا 100

100 تا 200

بیش از 200

با پیشنهاد طبقه بندی زیر، به نظر می رسد برای شرایط D، E و F از کیفیت عالی، برای شرایط B و C از کیفیت خوب و یا خیلی خوب و برای شرایط A کیفیت متوسط بکار گرفته شود.

جدول 13- تقسیم بندی پیشنهادی کیفیت بتن بر اساس آزمایش مقاومت الکتریکی

کیفیت بتن

عالی

خیلی خوب

خوب

متوسط

ضعیف

خیلی ضعیف

مقاومت ویژه الکتریکی بتن (اهم-متر)

بیش از 200

150 تا 200

100 تا 150

75 تا 100

50 تا 75

کمتر از 50

لازم به ذکر است اشباع کردن بتن در آب یا آب نمک با غلظت های معین، به شدت بر مقاومت ویژه الکتریکی بتن اثر می گذارد و وجود نمک محلول در منافذ بتن، مقاومت ویژه الکتریکی آن را به مقدار قابل توجهی کاهش می دهد. به هر حال مقادیر مندرج در جداول فوق، برای حالت اشباع در آب قابل شرب صادق می باشد.

اعداد جداول فوق ارتباط تنگاتنگی با مقادیر طبقه بندی های مندرج در جدول 5 (نفوذپذیری در برابر یون کلرید بر اساس جریان عبوری) دارد اما بدست آوردن یک رابطه کلی بین آنها به سهولت مقدور نمی باشد، مگر اینکه در رابطه با یک بتن مشخص، رابطه خاصی بدست آید.

آزمایش های تغییر حجم و ساختار بتن
لازم به ذکر است که آزمایش هایی در مورد جمع شدگی و انبساط بتن وجود دارد که به دوام مربوط می شود. برخی از اشکال دوام دارای آزمایش استاندارد معتبر نمی باشد. در آزمایش استاندارد ASTM C827 [60] تغییرات حجمی اولیه بتن تازه مورد بررسی قرار می گیرد. همچنین در سالهای اخیر در ارتباط با تعیین زمان ترک خوردگیخمیری مقید بتن که در معرض تبخیر خاصی قرار می گیرد دو آزمایش ASTM C1579 [61] و ASTM C1581 [62] پیشنهاد شده است که اولی برای بتن الیافی و دومی برای بتن معمولی کاربرد دارد و عمدتا بتن ها از نظر این زمان ترک خوردگی می توانند با یکدیگر مقایسه شوند اما ضابطه خاصی برای مناسب بودن بتن ها در منابع ارائه نشده است. در مورد بتن سخت شده صرفا آزمایش ASTM C490 [63] به چشم می¬خورد که می تواند جمع شدگی بتن سخت شده را به نمایش گذارد. همچنین برخی آزمایش ها مانند پتروگرافی بتن ASTM C856 [64] به بررسی مشکلات موجود در بتن و دوام آن می پردازد که جنبه کمی خاصی ندارد. همچنین امروزه آزمایش هایی با استفاده از میکروسکوپ الکترونی در ارتباط با بررسی کیفی انجام می شود که عمدتا بر اساس روش روبشی (SEM) استوار است. به تازگی دستورالعمل راهنمای استاندارد برای آزمایش SEM بتن سخت شده در ASTM C1723 [65] ارائه شده است.

آزمایش نیم پیل (پتانسیل خوردگی)

این آزمایش به طور مستقیم کیفیت بتن را از نظر دوام به نمایش نمی گذارد اما در آزمایشگاه می توان با ساخت آزمونه هایی با بتن¬های متفاوت و نگهداری بتن در شرایط مشابه، پتانسیل خوردگی میلگردها را بدست آورد که به نوعی می تواند نمایانگر کیفیت بتن مصرفی هر کدام از آزمونه ها بصورت مقایسه ای باشد.

دستور استاندارد ASTM C876 [66] برای تعیین پتانسیل خوردگی میلگردهای قطعات بتنی سازه ها در کارگاه (در محل) ارائه شده است مشروط بر اینکه میلگرد بتن دارای پوشش خاصی مانند اپوکسی یا روی نباشد. با این حال می توان در آزمایشگاه نیز این آزمایش را با تغییراتی انجام داد. برای این منظور از یک ولت متر و یک الکترود استفاده می شود و قطب مثبت مدار به الکترود و قطب منفی به میلگرد متصل می شود و ولتاژ (اختلاف پتانسیل) بین میلگرد و سطح بتن تعیین می گردد. معمولا محل تماس الکترود با سطح بتن به خوبی با مواد مرطوب کننده، مرطوب می شود تا اتصال برقرار گردد. در این آزمایش طبق دستور استاندارد از الکترود مس- سولفات مس استفاده می شود، اما می توان از الکترود کالومل اشباع یا الکترود نقره-کلرید نقره نیز استفاده کرد و نتایج بدست آمده را طبق استاندارد ASTM G3 [67] تبدیل نمود.

در کارگاه با ایجاد شبکه ای به فواصل 5/0 تا یک متر بر روی سطح بتن، اندازه گیری ها انجام می شود و خطوط تراز هم پتانسیل رسم می گردد. نتیجه آزمایش نمایانگر وجود فعالیت های خوردگی میلگردها در هنگام آزمایش می باشد. در ASTM C876 زمانی که از الکترود مس- سولفات مس استفاده می شود، احتمال وجود فعالیت خوردگی بصورت زیر مطرح شده است [66].

جدول 14- احتمال فعالیت خوردگی میلگردها بر اساس الکترود مس- سولفات مس در آزمایش نیم پیل

احتمال فعالیت خوردگی میلگرد

کمتر از 10 درصد

50 درصد

بیش از 90 درصد

اختلاف پتانسیل خوردگی (میلی ولت)

بزرگتر از 200-

350- تا 200-

کمتر از 350-

باید توجه داشت که با انجام این آزمایش نمی توان مستقیما شدت خوردگی میلگرد و یا میزان خوردگی آن را تعیین نمود.

بر اساس نتیجه آزمایش پتانسیل خوردگی، نمی توان در کارگاه در مورد کیفیت بتن ها از نظر نفوذپذیری در برابر یون کلرید یا CO2 به راحتی اظهارنظر نمود. در آزمایشگاه معمولا میلگردی را درون بتن به نحوی قرار می دهند که ضخامت بتن روی آن دقیقا مشخص و یکسان باشد. در صورتی که میلگردها کاملا مدفون در بتن باشد، باید سیمی را به آن وصل کرد و به بیرون انتقال داد. در صورتی که سر میلگرد بیرون از بتن باشد باید قسمت بیرونی و بخشی از قسمت درونی آن را (به میزان بیش از کاور) با اپوکسی پوشاند. معمولا نمونه های استوانه ای تهیه شده را تا دو سوم ارتفاع درون آب نمک قرار داده و در زمان های مختلف اختلاف پتانسیل قرائت می شود. هنوز دستور استانداردی غلظت آب نمک، نحوه تهیه نمونه، سن قرارگیری در آب نمک و غیره را مشخص نکرده است و پژوهشگران روش مشابهی را برای بتن های مختلف بکار می برند. در صورتی که میلگرد نمونه بتنی کاملا مدفون باشد می توان آن را کاملا درون آب نمک غرقاب کرد [15 و 59].

آزمایش شدت خوردگی میلگردها

شدت خوردگی میلگردها معمولا به صورت mA/cm2 و یا mm/Year بیان می گردد. آزمایش شدت خوردگی میلگردها در واقع آهنگ خوردگی میلگردها را در زمان آزمایش و در شرایط موجود حاکم بر آن نشان می دهد و در اصل بر حسب میکرو آمپر بر هر سانتی متر مربع از سطح میلگرد بیان می شود. هر mA/cm2 1 در واقع معادل 6/11 میکرومتر خوردگی در سطح میلگرد در هر سال می باشد که بر اساس تجربیات موجود این تبدیل انجام می گردد.

امروزه این آزمایش در آزمایشگاه و همچنین در کارگاه انجام می شود که در آزمایشگاه از دستور استاندارد ASTM G5 [68] استفاده می گردد. اما دستورالعمل استانداردی برای کارگاه وجود ندارد. اندازه گیری شدت خوردگی میلگردها به روش پتانسیواستاتیک یا پتانسیودینامیک انجام می شود که روش پتانسیواستاتیک کاربرد بیشتری در مورد خوردگی میلگردهای بتن دارد.

در این آزمایش علاوه بر اندازه گیری اختلاف پتانسیل (نیم پیل)، مقاومت الکتریکی بتن موجود در نزدیکی میلگرد اندازه گیری می شود و بر اساس این اندازه گیری ها، شدت خوردگی میلگردها بدست می آید.

نتیجه این آزمایش اطلاعات خاصی را در مورد کیفیت بتن بدست نمی دهد هرچند نفوذپذیری بتن و کم بودن مقاومت الکتریکی آن می تواند به افزایش شدت خوردگی منجر شود. در پژوهش های آزمایشگاهی، نمونه های شبیه به نمونه های نیم پیل تهیه و در شرایط یکسان در آب نمک نگهداری می گردد و در صورتی که میلگردها یکسان باشد، زیاد بودن شدت خوردگی نشانه بی کیفیتی بتن اطراف آن خواهد بود.

دستگاه مورد استفاده و رایج در تعیین شدت خوردگی میلگردها در کارگاه موسوم به گالواپالس است. شدت خوردگی میلگردها با روش گالواپالس دارای طبقه بندی زیر می باشد [69].

جدول 15- طبقه بندی شدت خوردگی میلگرد بر اساس روش گالواپالس

میزان شدت خوردگی

ناچیز

کم

متوسط

زیاد

خیلی زیاد

شدت خوردگی میلگرد (mm/Year)

کمتر از 6

6 تا 23

23 تا 58

58 تا 174

بیش از 174

شدت جریان خوردگی میلگرد در سطح (mA/cm2)

کمتر از 5/0

5/0 تا 2

2 تا 5

5 تا 15

بیش از 15

یکی از آزمایش های آزمایشگاهی شدت خوردگی که به آزمایش ماکروپیل شدت خوردگی موسوم است، آزمایشی است که با اقتباس از دستور استاندارد ASTM G109 [70] انجام می گردد. این آزمایش در اصل برای تعیین اثر مواد افزودنی بر خوردگی میلگردها تدوین شده است اما با تغییر در نوع بتنی که استفاده می شود می توان مقایسه ای بین بتن ها داشت بدون اینکه افزودنی خاصی در آن بکار رود.

در این آزمایش یک مکعب مستطیل ساخته می شود که در بالا یک میلگرد و در پایین دو میلگرد قرار می گیرد. در بالای نمونه یک حوضچه نصب می شود که در آن محلول آب نمک با غلظت خاصی می ریزند و بین میلگردهای پایین و بالا یک مقاومت نصب می گردد. محلول آب نمک در دوره های خاصی تخلیه و پر می شود و با اندازه گیری اختلاف ولتاژ، مقدار شدت جریان الکتریکی بدست می آید و در یک بازه زمانی، کل جریان عبوری بدست می آید که هر چه بیشتر باشد شدت خوردگی میلگردها بیشتر است. البته مقدار شدت جریان بر واحد سطح میلگرد نیز تعیین می شود [59 و 71].

پیشنهاد بکارگیری دوام مشخصه و دوام هدف طرح مخلوط بتن

همانگونه که برای مشخص کردن سطح مقاومتی بتن بکارگرفته شده در یک پروژه از واژه مقاومت مشخصه و یا حداقل مقاومت استفاده می شود، قاعدتا هنگامی که سطح دوام مشخصی مدنظر طراح پروژه باشد لازم است از واژه دوام مشخصه و یا ذکر نوع دوام و کیفیت بتن استفاده گردد، مثلا جذب آب مشخصه یا مقاومت ویژه الکتریکی مشخصه بکار رود. بدیهی است که دوام مشخصه نیز مانند مقاومت مشخصه یک مقدار احتمالاتی است که به سطح کیفی بتن از نظر دوام گفته می شود که 95 درصد بتن ها از آن بهتر می باشند. همانگونه که در طرح مخلوط بتن با استفاده از مقاومت مشخصه مقدار مقاومت میانگین طرح مخلوط (مقاومت هدف طرح) محاسبه می شود و در این محاسبه، انحراف معیار مقاومتی و یا حاشیه امنیت مقاومتی با توجه به سطح کیفی تولید بتن بکار می رود، در اینجا نیز باید از واژه دوام هدف طرح مخلوط بهره گیری شود و لازم است در آینده در آیین نامه های بتن و روش های طرح اختلاط بتن، جایگاه ویژه ای برای این تعاریف در نظر گرفته شود و بر این اساس پس از ساخت مخلوط های آزمون، دستیابی به این اهداف بررسی گردد و در صورت عدم توفیق در دستیابی به این اهداف، تغییر و اصلاح متناسبی در طرح اعمال شود. توصیه می شود کاهش 5 درصدی در دوام هدف طرح مخلوط بتواند پذیرفته شود و نیاز به تغییر طرح مخلوط نداشته باشیم.

پیشنهاد بکارگیری مفاهیم ارزیابی و پذیرش بتن بر اساس دوام

در همه آیین نامه های موجود دنیا پذیرش بتن از نظر مقاومتی و انطباق بر رده موردنظر یا مقاومت مشخصه دارای ضوابط آماری خاصی می باشد. مثلا گفته می شود اولا باید تواتر یا فرکانس خاصی در نمونه گیری برقرار باشد و ثانیا میانگین نتایج هر سه نمونه متوالی کمتر از مقاومت مشخصه و یا حتی کمتر از مقاومت مشخصه به اضافه مقدار خاصی نباشد و هر کدام از نتایج نمونه ها نیز کمتر از مقاومت مشخصه منهای مقدار خاصی باشد تا پذیرش بتن یک پروژه انجام شود.

مسلما اگر به مسئله دوام، هم سطح و هم تراز با مقاومت نگاه شود باید چنین ضوابطی نیز برای پذیرش بتن از نظر انطباق با دوام مشخصه تدوین گردد. همچنین واضح است که ضوابطی از نظر تواتر و فرکانس نمونه برداری باید موجود باشد. بنابراین در پروژه های مهم لازم است آزمایشگاه محلی به وسایل و تجهیزات خاصی برای انجام آزمایش های دوام موردنظر مجهز گردد و همانند گزارش مقاومت نمونه های بتن، پارامترهای دوام موردنظر را گزارش کند تا کیفیت بتن ها رصد گردد و پذیرش یا عدم پذیرش در دستور کار قرار گیرد.

در حال حاضر پیشنهاد می شود که شکل موجود در بررسی انطباق با مقاومت مشخصه، با تغییر برخی موارد جزئی، برای بررسی انطباق با دوام مشخصه بکار گرفته شود زیرا مفاهیم آماری آنها یکسان به نظر می رسد.

پیشنهاد تدوین ضوابط و روش بررسی بتن کم دوام

همانگونه که در همه آیین نامه های معتبر دنیا بخشی تحت عنوان بررسی بتن کم مقاومت وجود دارد و می توان بتن کم مقاومت را از نظر تامین مقاومت سازه یا ظرفیت باربری سازه پذیرفت، لازم است ضوابطی را تدوین نمود که بر اساس آن بتوان بتن های کم دوام را مورد بررسی قرار داد و به قبول یا رد آنها اقدام کرد. به هرحال ممکن است در این رابطه شباهت مسئله دوام با مقاومت چندان زیاد نباشد، اما روال کار می تواند با الهام از بررسی بتن کم مقاومت تدوین گردد. بررسی های تحلیلی، مغزه گیری و انجام آزمایش دوام و بکارگیری یک ضابطه پذیرش از جمله این موارد است اما ممکن است از مواردی همچون بارگذاری نتوان الگوبرداری نمود. با این حال اقدامات مقتضی دیگر مانند بکارگیری مواد پوششی بر سطح بتن و یا اتخاذ تدابیری برای با دوام تر کردن بتن یا قطعه و سازه بتنی می تواند شبیه به اقدامات مقتضی برای پذیرش بتن کم مقاومت سازه ای باشد.

واقعیت های موجود در ایران و جهان درباره دوام بتن

با توجه به آنچه گذشت روشن شد که مسئله دوام امروزه به تدریج از اهمیت زیادی برخوردار گشته است، اما هنوز مهندسین و طراحان مختلف در ایران و جهان در ارتباط با مسئله دوام پختگی لازم را کسب ننموده اند. همه پی در پی از دوام دم می زنند اما معمولا در مشخصات فنی پروژه ها اشاره چندانی به دوام و ارزیابی آن و ارائه معیارهایی برای کنترل نمی شود بجز آنکه محدودیت¬های خاصی را در ارتباط با نسبت آب به سیمان، حداقل و حداکثر عیار سیمان یا نوع سیمان مصرفی مطرح می کنند، بدون اینکه مشخص باشد با رعایت این موارد بتن در چه سطحی از کیفیت مرتبط با دوام قرار می گیرد و آیا نیازهای پروژه مرتفع خواهد شد یا خیر؟

به نظر می رسد هنوز آمادگی لازم برای انجام آزمایش های کنترلی دوام در ایران و دنیا بوجود نیامده است، هرچند در بخشنامه ای از سازمان مدیریت و برنامه ریزی برای حاشیه خلیج فارس چنین امری الزامی اعلام شده است. اما واقعیت آن است که این آزمایش¬ها را صرفا در هنگام تهیه طرح مخلوط بتن می توان به انجام رسانید و فرصت کافی و امکانات وافی برای انجام آنها بصورت یک آزمایش کنترلی مستمر، همچون تعیین مقاومت فشاری بتن، بر روی بتن های تولیدی در کارگاه وجود ندارد.

همچنین امروزه ضوابط خاصی برای پذیرش بتن از نقطه نظر دوام در ایران و جهان بوجود نیامده است و در استاندارد اروپا و آیین¬نامه ACI نیز هنوز چنین مواردی به چشم نمی خورد.

راهکارهایی برای خروج از بن بست

برای خروج از بن بست موجود علاوه بر آنچه در بخشنامه سازمان مدیریت برای حاشیه خلیج فارس دیده می شود لازم است تواتر نمونه برداری و ضوابط پذیرش منطبق با واقعیت ها و شرایط موجود عنوان گردد. ضمنا موضوع دوام فقط منحصر به حاشیه خلیج فارس و خوردگی میلگردها و نفوذ یون کلرید نیست، و وجوه مختلف دیگری نیز مطرح است، که در آیین نامه های مختلف باید این موارد پیش بینی شود. همچنین نمی توان انتظار داشت چنین مواردی بزودی نهادینه شود، مگر اینکه این آزمایش ها به شدت ساده و سریع باشند که مسلما دقت آنها در تعیین کیفیت بتن نیز تحت تاثیر این سرعت و سادگی قرار می گیرد.

به اعتقاد نویسنده، اگر بتوان مشکلات آزمایش تعیین مقاومت ویژه الکتریکی را برطرف و آن را استاندارد نمود، می توان از آن به عنوان یک آزمایش کنترلی سریع و ساده و غیر مخرب بهره گرفت. همچنین آزمایش جذب آب کوتاه مدت صرفنظر از مشکل خشک کردن و مغزه گیری، آزمایش سریع و ساده ای محسوب می شود.

آموزش جدی موضوع دوام در دروس تکنولوژی بتن و اجرا در دوره های آکادمیک و حین کار، راهکاری پایه ای برای دریدن این پوسته مزاحم محسوب می شود.

پیشنهادی برای نگارش مشخصات دوامی بتن
طراح پروژه باید در مشخصات فنی خصوصی پروژه، مشخصات بتن از نظر دوام را به صراحت قید نماید. همانگونه که مقاومت مشخصه یا رده بتن تصریح می گردد لازم است در مورد اعلام دوام مشخصه حتی با ذکر سن بتن و دستورالعمل آزمایش موردنظر اقدام گردد. به چنین موردی در ISO 22965-1 [72] و ISIRI 12284-1 [73] به صراحت اشاره شده است.

بدیهی است با توجه به شرایط حاکم بر پروژه و محیط موردنظر باید پارامتر یا پارامترهای خاصی مطرح شود و بهتر است برای هر نوع خواسته دوامی، صرفا یک پارامتر مناسب و در راستای تامین دوام اعلام گردد. ذکر چند پارامتر برای یک هدف ممکن است باعث سردرگمی شود و به عبارتی احتمال دارد که از نقطه نظر اعمال یک پارامتر، بتن مناسب باشد اما دستیابی به پارامتر دیگر مقدور نباشد و گرفتاری در پی داشته باشد. برای مثال اگر برای کاهش و کنترل نفوذ یون کلرید در بتن، آزمایش RCPT، مقاومت الکتریکی، جذب آب نیم ساعته، جذب آب نهایی، عمق نفوذ آب و غیره منظور شود جالب نخواهد بود و بهتر است صرفا RCPT یا مقاومت الکتریکی مطرح گردد. دلیل این امر را می توان نزدیکی ساز و کار آزمایش ها با نفوذ یون کلرید در بتن دانست. هر چند ممکن است برای کاهش و کنترل جذب آب یا نفوذ آب در بتن، آزمایش های جذب آب یا عمق نفوذ آب یا جذب آب مویینه یا جذب آب سطحی اولیه توصیه شود. به هرحال در همه موارد لازم است آزمایشی بکار رود که با ساز و کار حاکم بر پروژه و خرابی موردنظر سازگاری بهتری داشته باشد.

لازم به ذکر است هنوز رابطه مشخصی بین پارامترهای دوام مطرح نشده است و شاید بین بسیاری از آنها نتوان رابطه ای را در آینده نیز برقرار نمود. بنابراین نباید تصور شود که با در نظر گرفتن یک دوام مشخصه، می توان همه انواع دوام را تحت پوشش قرار داد و یا برای یک نوع دوام نباید تصور شود ارائه چند مورد دوام مشخصه مطلوب تر است.

اقدامات مهم انجام شده در ایران در زمینه دوام بتن

از اواخر دهه 60 هجری اقدامات پراکنده ای در مورد پژوهش مرتبط با دوام در ایران انجام شده است. اساتید دانشگاهی در برخی دانشگاه های کشور و در مرکز تحقیقات ساختمان و مسکن کارهای درخور توجهی را ارائه کردند. استاد گرانقدر آقای دکتر رمضانیانپور در مرکز تحقیقات ساختمان و مسکن و دانشگاه امیرکبیر از اواخر دهه 60 فعالیت هایی را در ارتباط با دوام از جمله کربناسیون، نفوذ یون کلرید و خوردگی میلگردها و غیره داشته اند که بسیار مهم و ذی¬قیمت بوده است و در سال گذشته به پاس این فعالیت ها، موسسه ACI از ایشان بصورت رسمی در یکی از کنفرانس ها در اسپانیا قدردانی نمود.

از جمله افرادی که بحث دوام بتن بویژه در موضوع نفوذ مواد زیان آور و کلریدها و خوردگی میلگردها در ایران مدیون ایشان می-باشد، استاد والامقام آقای دکتر قدوسی می¬باشد که از اواسط دهه هفتاد تحقیقات خود را حول محور دوام با تاکید بر آزمایش¬های الکتریکی همچون نیم پیل، شدت خوردگی و مقاومت الکتریکی در دانشگاه علم و صنعت و مرکز تحقیقات ساختمان و مسکن شروع کرد. ایشان برای اولین بار در ابتدای دهه 80 مبتکر برگزاری مسابقات مقاومت الکتریکی و جذب آب بتن در دانشگاه علم و صنعت بودند که بعدها توسط انجمن بتن ایران در راستای ترویج مفاهیم دوام، این مسابقات با شکل اصلاح یافته هر سال برگزار گردید.

در ارتباط با یخ زدن و آب شدن، فعالیت هایی توسط دکتر نیلی در دانشگاه بوعلی سینا و پژوهش هایی در انستیتو مصالح ساختمانی دانشگاه تهران و مرکز تحقیقات ساختمان و مسکن انجام شده است.

همچنین آقای دکتر باقری در دانشگاه خواجه نصیرالدین طوسی و آقای دکتر فامیلی در دانشگاه علم و صنعت در مورد دوام تحقیقاتی را به انجام رسانیده اند. همواره در برخی دانشگاه های دیگر نیز جسته و گریخته پژوهش های پراکنده و غیر منسجمی صورت می گیرد.

در سالهای 83 و 84 برای اولین بار سعی شد حرکت های جدی و خاصی بویژه در مورد دوام بتن و سازه ها در حاشیه خلیج فارس به انجام رسد. سازمان مدیریت و برنامه ریزی با همکاری مرحوم دکتر قالیبافیان و جناب آقای دکتر رمضانیانپور اولین نوشته الزام آور را تحت عنوان بخشنامه معیارهای پذیرش بتن بر مبنای پایایی به شماره 34229-101 مورخ 4/3/1383 برای پروژه های عمرانی دولتی احداثی در حاشیه خلیج فارس و دریای عمان [74] منتشر نمود که اقدام مهمی در این رابطه به شمار می رود.

ضمن تماس با جناب آقای دکتر رمضانیانپور به کاستی ها و مشکلات این بخشنامه اشاره گردید و بحث هایی در مورد کتاب (نشریه) ارزشمند شماره ک 396 مرکز تحقیقات ساختمان و مسکن با عنوان توصیه هایی برای پایایی بتن در سواحل جنوبی کشور [75] که با هدایت و پشتکار ایشان و همکارانشان در سال 1383 منتشر شده بود مطرح شد و مقرر گشت کمیته ای مرکب از متخصصین در مرکز تحقیقات ساختمان و مسکن تشکیل گردد و توصیه های نشریه مزبور بصورت تفصیلی و اصلاح شده منتشر شود که بعدها نام آیین نامه پیشنهادی برای آن انتخاب گشت.

با برگزاری جلسات مکرر و بحث در مورد پیش¬نویس ها، بالاخره برای اولین بار چنین متنی تهیه و در سال 1384 به شماره ض 428 تحت عنوان آیین نامه پیشنهادی پایایی بتن در محیط خلیج فارس و دریای عمان [34] منتشر گردید. در نگارش این متن سعی گردید بخشنامه سازمان مدیریت نقض نشود و از مطالبی که موسسه CIRIA برایبتن در مناطق عربی تدوین کرده بود استفاده گردد کما اینکه در بخشنامه مزبور نیز از یکی از جداول این نشریه اقتباس شده بود.

لازم به ذکر است از حدود سال 1380 انستیتو مصالح ساختمانی دانشگاه تهران به سرپرستی و هدایت آقای دکتر قالیبافیان و مدیریت جدید و پر توان آقای دکتر شکرچی زاده، یک مجموعه از کارهای تحقیقاتی را با کمک تعدادی از دانشجویان دوره های کارشناسی ارشد عمران تحت عناوین مختلف پایان نامه های دانشجویی آغاز کرد که هدف آن تدوین و ارائه نرم افزاری بومی بر اساس نرم افزار Life365 موسسه ACI برای حاشیه خلیج فارس بود و سازمان مدیریت و برنامه ریزی نیز با توجه به قرارداد منعقده از آن پشتیبانی می نمود. این کار تحقیقاتی که نگارنده هم افتخار همکاری در انجام آن را داشته است، سر منشا تحولات جدی در این زمینه به حساب می آید زیرا از هدفمندی خاصی برخوردار بود و در انجام این تحقیقات از همه پژوهش های قبلی مرکز تحقیقات ساختمان و مسکن که با هدایت عزیزانی همچون دکتر رمضانیانپور، دکتر قدوسی، دکتر باقری و دکتر پرهیزگار انجام شده بود، بهره گیری شد.

صرفنظر از میزان موفقیتی که در انستیتو مصالح ساختمانی حاصل شد اصل این اقدام بسیار مهم بود هرچند انستیتو به موفقیت های زیادی نیز دست یافت اما کنار کشیدن سازمان مدیریت و برنامه ریزی از حدود سال 1384 لطمه شدیدی به این اهداف وارد نمود و آن را ناقص و ابتر باقی گذارد. با این حال انستیتو با حمیت و غیرت خاص سعی نمود که آن را به هر ترتیب دنبال نماید. به تازگی انستیتو مصالح ساختمانی دانشگاه تهران مدل های احتمالاتی خوردگی را مورد تحقیق قرار داده است و سعی می کند همانگونه که در Life 365 تحولاتی رخ می دهد، نرم افزار DuraPGulf را به روز کند و اطلاعات جدیدتری را به آن بیفزاید.

در سال 1386 با توجه به انجام آزمایش های مختلف در آزمایشگاه های تحقیقاتی و خدماتی در ارتباط با دوام بتن در حاشیه خلیج فارس، پیشنهادی در مورد مطالعه کاربرد نتایج نفوذپذیری گاز اکسیژن در بتن در این منطقه و ارائه ضابطه و معیار خاص در این مورد توسط انستیتو مصالح ساختمانی دانشگاه تهران مطرح شد.

به دنبال پیشنهاد انستیتو به مرکز تحقیقات و تعریف این تحقیق، در جلسه ای با حضور بسیاری از اساتید، قرار شد یک مطالعه جامع در زمینه آزمایش¬های دوام مرتبط با منطقه خلیج فارس انجام شود که در مرحله اول آزمایش¬های مختلفی بر روی بتن های محدود و خاصی توسط مرکز تحقیقات ساختمان و مسکن و برخی دانشگاه ها انجام شود تا ارتباط این نتایج با یکدیگر بررسی گردد.

این تحقیق برای اولین بار به عنوان یک مرحله از تحقیق جامع و با کمک چند مرکز پژوهشی در سال 1387 کلید خورد که امید است در سال 1389 پرونده آن بسته شود.

دانشگاه تهران (انستیتو مصالح ساختمانی)، دانشگاه امیر کبیر (مرکز تحقیقات تکنولوژی بتن و دوام)، دانشگاه خواجه نصیرالدین طوسی، دانشگاه بوعلی سینا و برخی اساتید و مشاورین مرکز تحقیقات ساختمان و مسکن در این تحقیق همکاری نزدیکی با مرکز تحقیقات ساختمان و مسکن داشتند که در نوع خود اولین پروژه مشترک تحقیقاتی در این زمینه می باشد [76].

با انجام این تحقیق امید است بتوان در مورد انتخاب آزمایش های موثر و کارا در زمینه دوام بتن در محیط خلیج فارس و همچنین انتخاب معیارهای جدید یا تصحیح و بازنگری معیارهای قبلی اقدام نمود و تغییراتی را در آیین نامه پیشنهادی پایایی بتن در این مناطق بوجود آورد و این امر نیز در نوع خود برای اولین بار اتفاق می افتد که در تدوین یک آیین نامه از تحقیقات مفصل داخلی بهره گیری شود، هرچند در تدوین آیین نامه پایایی اولیه و نشریه شماره ک 396 (توصیه هایی در مورد پایایی بتن در سواحل جنوبی کشور) از چنین تجربیاتی در سطح محدودتر استفاده شده بود.

لازم به ذکر است به موازات این تحقیق، پروژه های دیگری در زمینه خوردگی و دوام و تهیه مدل های دوام در مرکز تحقیقات ساختمان و مسکن تعریف شده است که برخی از آنها کلید خورده است و برخی دیگر در آینده شروع خواهد شد که امید است سرانجام خوبی را در پی داشته باشد.

همچنین در تامین دوام جداول بتنی و با تبیین مشکلات موجود در اوائل دهه 80، همه دست اندرکاران اذعان داشتند که نیاز به تدوین مشخصات فنی برای پذیرش جداول بتنی بویژه از نقطه نظر دوام وجود دارد و باید به دنبال چنین موردی بود. به هرحال مسئولین شهرداری تهران یک سفارش شفاهی (بدون عقد قرارداد) در این زمینه را به مرکز تحقیقات ساختمان و مسکن دادند و در سال 1386 و 1387 جلساتی در مرکز برای تدوین دستورالعملی در مورد جداول بتنی پیش ساخته برگزار گردید که منجر به تدوین نشریه شماره ض 517 تحت عنوان ضابطه ساخت جداول بتنی در سال 1388 [77] شد. در این نشریه از استانداردهای EN 1340 [7] و EN 206 [78] استفاده شده، اما این نشریه در عمل لازم الاجرا نشده است.

در سال 1387 بنا به سفارش سازمان مهندسی و عمران شهر تهران، راهنمای تولید و مشخصات فنی و ضوابط پذیرش جداول پیش ساخته بتنی توسط نگارنده و با همکاری دکتر رضایی نوشته شد، که در سال 1388 منتشر گردید. در این نشریه که تحت شماره EDO 201 [79] منتشر شده است از EN 206 [78]، EN 1340 [7] و نشریه منتشر نشده (تا آن تاریخ) ضابطه ساخت جداول بتنی مرکز تحقیقات ساختمان و مسکن [77] استفاده شد و برخی تجربیات شخصی نیز در تدوین آن بکار رفته است. خوشبختانه در اوائل سال 1389 بکارگیری آن در شهرداری تهران الزامی شد، امید است با استفاده صحیح از آن مسئله دوام جداول بتنی حل شود.

در سال 1387 و 1388 تدوین استاندارد ملی مشخصات جداول بتنی پیش ساخته انجام شد که قرار است در سال 1389 منتشر گردد و با انتشار آن گام مثبت دیگری در بالا بردن دوام این جداول برداشته خواهد شد. در این استاندارد نیز EN 1340 [7] مورد استفاده قرار گرفت و مواردی به آن اضافه شد که در پیوست اطلاعاتی آن (غیر الزامی) آورده شده است.

تدوین استاندارد ملی شماره 8906 لوله های بتنی مسلح برای جمع آوری آب باران و فاضلاب [49] بر اساس ASTM C76 [48] در سال 1385 نیز گام دیگری در مشخص کردن ضوابط عملکردی بتن های این لوله ها محسوب می شود.

امید است در آیین نامه بتن ایران، مقررات ملی ساختمان، مشخصات فنی عمومی کارهای ساختمانی، مشخصات فنی عمومی راه، مشخصات فنی عمومی آبیاری و زهکشی، مشخصات فنی عمومی سد و سازه های آبی و غیره ضوابط عملکردی دوام بر اساس آزمایش های دوام وارد شود و باب جدیدی در این راه گشوده گردد.

جمع بندی، نتیجه گیری نهایی و پیشنهادها

در مجموع با توجه به موارد مطروحه در این نوشته می توان نکات زیر را به عنوان جمع بندی و نتیجه گیری به همراه پیشنهادها ذکر کرد:

- امروزه نمی توان به ضوابط شکلی دوام مانند محدودیت نسبت آب به سیمان و غیره دلخوش کرد و لازم است ضوابط عملکردی مستقیم یا غیر مستقیم در ارتباط با دوام را مطرح نمود.

- برای مشخص کردن دوام بتن ها آزمایش هایی را باید بر روی بتن انجام داد. این آزمایش ها گاه بطور مستقیم مرتبط با دوام است و گاه بصورت غیر مستقیم به دوام بتن مربوط می شود. مسلما آزمایش های نوع اول همواره ارجح است.

- برای دوام بتن بسته به شرایط حاکم و ساز و کار خرابی، آزمایش های متفاوتی وجود دارد. آزمایشی را می توان در دستور کار قرار داد که به ساز و کار خرابی نزدیک تر باشد.

- پس از انجام آزمایش های مورد نظر، معیار یا ضابطه خاصی باید ارائه شود. این ضوابط و معیارها بر اساس پژوهش ها و تجربیات قبلی ارائه می شود. با انجام تحقیقات بیشتر و بررسی بتن ها در شرایط محیطی واقعی می توان انتظار داشت که این معیارها دستخوش تغییراتی شود.

- طرح ضوابط عملکردی بتن هنوز در دنیا و ایران رایج نشده است اما مدتی است ارائه این معیارها در دستور کار قرار گرفته است.

- آزمایش هایی که معمولا بطور مستقیم کیفیت بتن را از نظر دوام نشان می دهد گاه طولانی مدت یا گران قیمت است و نمی توان از آنها به عنوان یک آزمایش کنترلی استفاده نمود.

- بکارگیری آزمایش هایی که بطور غیر مستقیم کیفیت بتن از نظر دوام را به نمایش می گذارد وقتی رایج می شود که در اسرع وقت و با هزینه کم و ترجیحا بصورت غیر مخرب انجام شود.

- دوام مشخصه مانند مقاومت باید جایگاه خود را در مشخصات فنی پروژه ها پیدا کند. در طرح مخلوط بتن باید دوام هدف با توجه به دوام مشخصه و شرایط ساخت بتن در کارگاه مدنظر قرار گیرد.

- در آیین نامه ها و مشخصات فنی پروژه ها تواتر نمونه برداری، نحوه ارزیابی و ضوابط پذیرش بتن از نظر دوام همچون مقاومت فشاری باید روشن و تبیین گردد.

- در آیین نامه و مشخصات فنی پروژه ها، بخشی تحت عنوان بررسی بتن کم دوام مانند بتن کم مقاومت باید اضافه شود.

- برای برخی ساز و کارهای خرابی هنوز آزمایش استاندارد مستقیم یا غیر مستقیم تدوین نشده است که از جمله می توان حمله سولفات ها و تبلور نمک ها را ذکر کرد.

- اقدام هایی در بررسی دوام بتن ها در کشور انجام شده و یا در حال انجام است. تدوین آیین نامه هایی مانند پایایی بتن در حاشیه خلیج فارس و ضوابط و مشخصاتجداول بتنی پیش ساخته از جمله اقدامات مهم است که طلیعه دار اقدامات دیگر خواهد بود.

- ضوابط و معیارهای دوام ممکن است در سال¬های آینده با توجه به تجربیات و مشاهدات رفتار بتن از نظر دوام دستخوش تغییراتی شود.

- تجربه نشان می دهد که کارهای گروهی و غیر پراکنده در کشور می تواند دستاوردهای مهم و اثرگذاری را به دنبال داشته باشد.

- راه درازی در پیش است تا به مسئله دوام در عمل مانند مقاومت نگریسته شود و به حرف اکتفا نگردد.

منابع و مراجع

1- ACI Committee 201 (2001), "Guide to Durable Concrete (ACI 201.1R)", American Concrete Institute, Farmington, Hills, Mich., 41 pp.

2- مهتا، پ. کومار، مترجم رمضانیانپور، علی اکبر و همکاران (1383)، "ریز ساختار، خواص و اجزای بتن (تکنولوژی بتن پیشرفته)"، چاپ اول، انتشارات دانشگاه صنعتی امیرکبیر، تهران، ایران.

3- نویل، آدام، مترجم فامیلی، هرمز (1378)، "خواص بتن"، بازنگری چهارم، ابوریحان بیرونی، تهران، ایران.

4- ASTM (2003), "Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing", ASTM C 666, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

5- ASTM (2005), "Standard Test Method for Evaluating the Freeze-Thaw Durability of Dry-Cast Segmental Retaining Wall Units and Related Concrete Units", ASTM C 1262, Annual Book of ASTM Standards, Philadelphia, vol. 04-05.

6- ASTM (2003), "Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals", ASTM C 672, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

7- EN 1340 (2003), "Concrete kerb units - Requirements and test methods"

8- ASTM (2005), "Standard Specification for Segmental Retaining Wall Units", ASTM C 1372, Annual Book of ASTM Standards, Philadelphia, vol. 04-05.

9- ASTM (2002), "Standard Test Method for Potential Expansion of Portland-Cement Mortars Exposed to Sulfate", ASTM C 452, Annual Book of ASTM Standards, Philadelphia, vol. 04-01.

10- ASTM (2004), "Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution", ASTM C 1012, Annual Book of ASTM Standards, Philadelphia, vol. 04-01.

11- Xu, A., Shayan, A., Baburamani, P., (1998), "Test Methods for Sulfate Resistance of Concrete and Mechanism of Sulfate Attack: State-of-the-Art Review", ARRB Transport Research Ltd., Review Report 5

12- Ferraris, C. F., Stutzman, P. E., Snyder, K.A., (2006), "Sulfate Resistance of Concrete: A New Approach, R&D Serial No. 2486", PCA, Skokie, Illinois, USA

13- RILEM Committee CPC18 (1988), "Measurement for Hardened Concrete Carbonated Depth", TC14-CPC.

14- EN 14630 (2006), " Products and systems for the protection and repair of concrete"

15- مرکز تحقیقات ساختمان و مسکن (1378)، "نشریه شماره ک-283: فن آوری بتن در شرایط محیطی خلیج فارس- جلد اول: آسیب شناسی بتن و ارزیابی آن"، چاپ اول، تهران، ایران.

16- ASTM (2003), "Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction", ASTM C 1293, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

17- ACI Committee 221 (1998), " State-of-the-Art Report on Alkali-Aggregate Reactivity (ACI 221.1R)", American Concrete Institute, Farmington, Hills, Mich., 31 pp.

18- ASTM (2003), " Standard Specification for Concrete Aggregates, Appendix", ASTM C 33, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

19- استاندارد ملی ایران 302 (1381)، "سنگدانه های بتن - ویژگیها"، تجدیدنظر دوم، موسسه استاندارد و تحقیقات صنعتی ایران.

20- ASTM (2003), " Standard Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction", ASTM C 1105, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

21- ASTM (2000), " Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method", ASTM C 944, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

22- ASTM (2000), " Standard Test Method for Abrasion Resistance of Concrete by Sandblasting", ASTM C 418, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

23- ASTM (2000), " Standard Test Method for Abrasion Resistance of Horizontal Concrete Surfaces", ASTM C 779, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

24- ASTM (2000), "Standard Test Method for Abrasion Resistance of Concrete (Underwater Method)", ASTM C 1138, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

25- US Army (1992), "Standard Test Method for Water Permeability of Concrete", CRD-C 48

26-USBR test designation 4913 (1992), "Procedure for determining water permeability of concrete", United States Bureau of Reclamation

27- Gomez, A.M., Costa, J.O., Albertini, H., Aguiar, J.E., (2003) "Permeability of Concrete: A Study Intended for the in situ Valuation Using Portable Instruments and Traditional Techniques", Non Destructive Testing in Civil Engineering, International Symposium (NDT CE 2003)

28- Kollek, J.J. (1989), "The determination of the permeability of concrete to oxygen by the CemBureau method- a recommendation", Materials and Structures, 22:225–230.

29- RILEM TC 116-PCD, "Recommendations of TC 116-PCD: Tests for gas permeability of concrete; A. Preconditioning of concrete test specimens for the measurement of gas permeability and capillary absorption of water; B. Measurement of the gas permeability of concrete by the RILEM - CEMBUREAU method", Material and Structures, 32:174-179.

30- Torrent, R. (1999), "The Gas-Permeability of High-Performance Concretes: Site and Laboratory Tests", ACI SP-186, paper 17:291-308

31- ASTM (2003), "Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion", ASTM C 1556, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

32- NT BUILD 443 (1995), "Concrete, Hardened: Accelerated Chloride Penetration", NORDTEST Method

33- Concrete Society (2008), "Technical Report No.31 -Permeability Testing of Site Concrete", CCIP, UK.

34- مرکز تحقیقات ساختمان و مسکن (1384)، "نشریه شماره ض-428: آیین نامه ملی پایایی بتن در محیط خلیج فارس و دریای عمان (پیشنهادی)"، چاپ اول، تهران، ایران.

35- AASHTO T259 (2002),"Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration", American Association of State Highway and Transportation Officials, Washington, DC

36- NT BUILD 492 (1999), "Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from non Steady State Migration Experiments", NORDTEST Method

37- AASHTO T277 (2005),"Standard Method of Test for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration", American Association of State Highway and Transportation Officials, Washington, DC

38- ASTM (2003), " Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration", ASTM C 1202, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

39- ACI Committee 222 (2001), "Protection of Metals in Concrete Against Corrosion (ACI 222R)", American Concrete Institute, Farmington, Hills, Mich., 41 pp.

40- DIN 1048-5 (1991)," Testing concrete; testing of hardened concrete (specimens prepared in mould)", Deutsches Institut für Normung, Berlin, Germany

41- EN 12390-8(2000), "Testing Hardened Concrete - Part 8: Depth of Penetration of Water Under Pressure", European Committee for Standardization.

42- مرکز تحقیقات ساختمان و مسکن (1387)، "نشریه شماره ض-504: توصیه هایی برای تعمیر سازه های بتنی در سواحل جنوبی ایران"، چاپ اول، تهران، ایران.

43- BS 1881, Part 122 (1983),"Testing concrete – Part 122: Method for Determination of Water Absorption", British Standard, London, England

44- BS 7263, Part 1 (2001), "Precast concrete flags, kerbs, channels, edgings and quadrants. Precast, unreinforced concrete paving flags and complementary fittings. Requirements and test methods", British Standard, London, England

45- Walker, M., (2002), "Guide to the Construction of Reinforced Concrete in the Arabian Peninsula (C577)", CIRIA and Concrete Society, UK

46- ASTM (2000), "Standard Test Method for Density, Absorption, and Voids in Hardened Concrete", ASTM C 642, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

47- ASTM (2003), "Standard Test Methods for Concrete Pipe, Manhole Sections, or Tile", ASTM C 497, Annual Book of ASTM Standards, Philadelphia, vol. 04-05.

48- ASTM (2003), " Standard Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe", ASTM C 76, Annual Book of ASTM Standards, Philadelphia, vol. 04-05.

49- استاندارد ملی ایران 8906 (1385)، "لوله های بتنی مسلح، برای جمع آوری آب باران و فاضلاب- ویژگیها"، چاپ اول، موسسه استاندارد و تحقیقات صنعتی ایران.

50- استاندارد ملی ایران 1-70 (1387)، "بلوک سیمانی توخالی- قسمت اول: ویژگی¬ها"، تجدیدنظر دوم، موسسه استاندارد و تحقیقات صنعتی ایران.

51- استاندارد ملی ایران 755 (1383)، "موزاییک- ویژگی¬ها و روش¬های آزمون"، چاپ اول، موسسه استاندارد و تحقیقات صنعتی ایران.

52- استاندارد ملی ایران 7782 (1383)، "بلوک‌های سیمانی سبک غیر باربر- ویژگی‌ها"، چاپ اول، موسسه استاندارد و تحقیقات صنعتی ایران.

53- BS 1881, Part 208 (1996)," Testing concrete – Part 122: Recommendations for the Determination of the Initial Surface Absorption of Concrete", British Standard, London, England

54- RILEM Committee CPC11.2 (1982), " Absorption of water of concrete by capillarity".

55- ASTM (2004), "Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes", ASTM C1585, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

56- Branco, F.A., de Brito, J., (2003), "Handbook of Concrete Bridge Management", ASCE, USA.

57- شکرچی زاده، محمد، جوادیان، علیرضا، حاجی بابایی، امیر (1385)، "پارامترهای مهم در مقاومت الکتریکی بتن و روش های اندازه گیری مقاومت"، مجله انجمن بتن ایران، شماره 23، صفحه 20 تا 26

58- ASTM (2006), "Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method", ASTM G57, Annual Book of ASTM Standards, Philadelphia, vol. 03-02.

59- تدین، محسن (1381)، "بررسی و ارزیابی مقاومت کششی، مدول ارتجاعی، ضریب پواسون و شدت خوردگی بتن سبک پرمقاومت با مصالح موجود در ایران"، رساله دکتری در رشته مهندسی عمران-سازه، دانشگاه علم و صنعت ایران، تهران، ایران.

60- ASTM (2001), "Standard Test Method for Change in Height at Early Ages of Cylindrical Specimens of Cementitious Mixtures", ASTM C827, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

61- ASTM (2006), "Standard Test Method for Evaluating Plastic Shrinkage Cracking of Restrained Fiber Reinforced Concrete (Using a Steel Form Insert)", ASTM C1579, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

62- ASTM (2004), "Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage", ASTM C1581, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

63- ASTM (2000), "Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete", ASTM C490, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

64- ASTM (2004), "Standard Practice for Petrographic Examination of Hardened Concrete", ASTM C856, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

65- ASTM (2010), "Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy", ASTM C1723, Annual Book of ASTM Standards, Philadelphia, vol. 04-02.

66- ASTM (2009), "Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete", ASTM C876, Annual Book of ASTM Standards, Philadelphia, vol. 03-02.

67- ASTM (1989), "Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing", ASTM G3, Annual Book of ASTM Standards, Philadelphia, vol. 03-02.

68- ASTM (1994), "Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements", ASTM G5, Annual Book of ASTM Standards, Philadelphia, vol. 03-02.

69- Germann Instruments (2009), "GulvaPulse Instruction and Maintenance Manual", Denmark.

70- ASTM (2007), "Standard Test Method for Determining Effects of Chemical Admixtures on Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments", ASTM G109, Annual Book of ASTM Standards, Philadelphia, vol. 03-02.

71- مرکز تحقیقات ساختمان و مسکن (1383)، "نشریه شماره ک-370: فن آوری بتن در شرایط محیطی خلیج فارس- جلد دوم: روشها و توصیه ها برای افزایش عمر مفید سازه های بتنی"، چاپ اول، تهران، ایران.

72- ISO (2007), "Concrete - Part 1: Methods of specifying and guidance for the specifier", ISO 22965-1, Geneva, Switzerland.

73- استاندارد ملی ایران 1-12284 (1388)، "بتن- قسمت 1- راهنمای نگارش مشخصات فنی"، چاپ اول، موسسه استاندارد و تحقیقات صنعتی ایران.

74- امور فنی سازمان مدیریت و برنامه ریزی کشور (1383)، "معیارهای پذیرش بتن بر مبنای پایایی"، بخشنامه شماره 34229-101، ایران

75- مرکز تحقیقات ساختمان و مسکن (1383)، "نشریه شماره ک-396: توصیه هایی برای پایایی بتن در سواحل جنوبی کشور"، چاپ اول، تهران، ایران.

76- تدین، محمدحسین (1388)، "بررسی ضریب نفوذپذیری گاز در بتن و مقایسه آن با سایر پارامترهای دوام برای ارزیابی کیفی بتن سازه های دریایی"، پایان نامه کارشناسی ارشد در رشته مهندسی عمران-سازه های دریایی، دانشکده فنی دانشگاه تهران، تهران، ایران.

77- مرکز تحقیقات ساختمان و مسکن (1388)، "نشریه شماره ض-517: ضابطه ساخت جداول بتنی (پیشنهادی)"، چاپ اول، تهران، ایران.

78- EN 206 (2000), "Concrete-Part1: Specification, performance, production and conformity"

79- تدین، محسن، رضایی، فریدون، نصر آزادانی، سید مسعود (1388)، "مشخصات فنی، راهنمای تولید و پذیرش جداول بتنی پیش ساخته"، انتشارات به آوران، نشریه EDO 201 سازمان مهندسی و عمران شهر تهران، چاپ اول، تهران، ایران.

نویسنده : کلینیک بتن ایران/دپارتمان تحقیق و توسعه.((مشاور و تولید کننده محصولات افزودنی بتن و ارائه دهنده خدمات مهندسی بتن))

 

 



:: برچسب‌ها: کلینیک بتن ایران ,
:: بازدید از این مطلب : 218
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : یک شنبه 6 خرداد 1397 | نظرات ()